Skip to main content

Shear Strength and Viscosity of Metals in Shock Waves

  • Chapter
High-Pressure Shock Compression of Solids VII

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

Elastoplastic deformation phenomena observed when metals are subjected to shock-wave loading have been investigated theoretically and experimentally for over fifty years and remain topical today for the following reasons. First, shock-wave experimental techniques give unique information about fundamental physical mechanisms of high-rate plastic deformation because the shock-wave amplitudes are precisely controlled, leading to control of the plastic strain, particle velocity, total and plastic strain rates, etc. Second, relaxation processes are most conspicuous in shock waves because the deformation rate is close to the rate at which the stress relaxes. This allows one to study the stress relaxation history resulting from both the development of strain through the wave front and the evolution of the material defect structure and its self-organization during the shock-wave loading. Finally, solutions are in demand for many applied problems including armor ballistics, explosive welding, and containment of explosive events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.V. Al’tshuler, Sov. Phys.-Usp. 8 (1), pp. 52–91, (1965).

    Google Scholar 

  2. L.V. Al’tshuler, Usp. Fiz. Nauk 85 (2), pp. 197–258 (1965).

    Google Scholar 

  3. L.V. Al’tshuler, D.M. Tarasov, M.P. Speranskaya, 13 (5), p. 95 (1962).

    Google Scholar 

  4. L.V. Al’tshuler, D.M. Tarasov, M.P. Fiz. Met. Metall. 13 (5), p. 738 (1962).

    Google Scholar 

  5. L. V.AI’tshuler, M.N. Pavlovsky, V.V. Komissarov, and P.V. Makarov, Comb. ExpL Shock Waves 35 (1), pp. 92–96 (1999).

    Google Scholar 

  6. L. V.AI’tshuler, M.N. Pavlovsky, V.V. Komissarov, and P.V. Makarov, Fiz. Gor. Vzr. 35 (1), pp. 102–107 (1999).

    Google Scholar 

  7. M.A. Meyers and L.E. Murr: Shock Waves and High-Strain-Rate Phenomena in Metals (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 121–151.

    Book  Google Scholar 

  8. M.A. Mogilevskii, Mechanisms of Strain at Fracture by Shock Waves, Dep. No. 2830–80, VINITI, (1980).

    Google Scholar 

  9. G.I.Kanel, S.V. Razorenov, and V.E. Fortov, Sov. Phys-DokL(Physics) 29 (3), pp. 241–242 (1984).

    Google Scholar 

  10. G.I.Kanel, S.V. Razorenov, and V.E. Fortov, Dokl. Akad. Nauk SSSR, Ser. tekhn. 275, pp. 369–372. (1984).

    Google Scholar 

  11. G.I. Kanel, and V.E. Fortov, Uspekhi mechanics 10 (3), pp. 3–81 (1987).

    Google Scholar 

  12. T.M. Sobolenko (ed.), High-Speed Impact: Hardening ofMetals and Alloys by Shock Waves, Sib. otd. AN SSSR. Novosibirsk: Nil hydrodynamics, (1985).

    Google Scholar 

  13. N.Kh. Akhmadeev, Dynamic Fracture of Solid Bodies in Stress Waves, Ufa: Izdat BFAN SSSR, (1988).

    Google Scholar 

  14. G.V. Stepanov, Behaviour of Structural Materials in Elastoplastic Relief Waves, Naykova Dymka, Kiev, (1978).

    Google Scholar 

  15. G.V. Stepanov, Elastoplastic Deformation ofMetals Under the Action of Pulsed Loading, Naykova Dymka, Kiev, (1979).

    Google Scholar 

  16. J. Friedel, Dislocations, Pergamon, New York, 1964.

    MATH  Google Scholar 

  17. C. Kittel, Introduction to Solid State Physics, Wiley, New York (1967).

    Google Scholar 

  18. L.E. Murr, in: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 202–241.

    Google Scholar 

  19. T. Svensson: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 164–176.

    Google Scholar 

  20. L.E. Murr, in: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 260–276.

    Google Scholar 

  21. J.M. Kelly and P.P. Gillis, J. Appl. Phys. 38 (10), pp. 4044–4046 (1967).

    Article  ADS  Google Scholar 

  22. T.E. Ardvisson, Y.M. Gupta, and G.E. Duvall, J. Appl. Phys. 46 (10), pp. 4474–4478 (1975).

    Article  ADS  Google Scholar 

  23. R.J. Clifton, in: Shock Compression of Condensed Matter-1983 (eds. J.R. Asay, R.A. Graham, and G.K. Straub), Elsevier, Amsterdam, pp. 105–110.

    Google Scholar 

  24. R. Fowles and R.F. Williams, J.App L Phys. 41 (1), pp. 360–363 (1970).

    Article  ADS  Google Scholar 

  25. J.R. Amy, L.C. Chhabildas, and J.L. Wise: Shock Waves in Condensed Matter-1981 (eds. W.J. Nellis, L. Seaman, and R.A. Graham) American Institute of Physics, New York, (1982), pp. 427–431.

    Google Scholar 

  26. J.N. Johnson and L.M. Barker, J. Appl. Phys. 40 (11), pp. 4321–4334 (1969).

    Article  ADS  Google Scholar 

  27. P.J. Chen, R.A. Graham, and L. Davison, J. Appl. Phys. 43 (12), pp. 5021–5027 (1972).

    Article  ADS  Google Scholar 

  28. K.H. Hartman, H.D. Kuntse, and L.V. Meyer: Shock Waves and High-StrainRate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 276–282.

    Google Scholar 

  29. R.A. Graham, in: Shock Waves and High-Strain Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 184–192.

    Google Scholar 

  30. J.T. Fourie, Phil. Mag. 21 (173), pp. 977–987 (1970).

    Google Scholar 

  31. L.E. Murr, O.T. Inal, and A.A. Morales, Acta Met. 24(3), pp. 261–270 (1976).

    Google Scholar 

  32. K.P. Staudhammer, S.E. Frantz, S.S. Hecker, and L.E. Murr: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 282–294.

    Google Scholar 

  33. H.K. Rogers and K.V. Shastri: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 301–309.

    Google Scholar 

  34. D.P. Dandekar and A.G. Martin: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 309–318.

    Google Scholar 

  35. L.M. Barker, in: Shock Compression of Condensed Matter-1983 (eds. J.R. Asay, R.A. Graham, and G.K. Straub), Elsevier, Amsterdam, (1984), pp. 217–224.

    Google Scholar 

  36. L.C. Chhabildas, and L.M. Barker, in: Shock Waves in Condensed Matter-1987 (eds. S.C. Schmidt and N.C. Holmes) North-Holland, Amsterdam, (1988), pp. 111–114.

    Google Scholar 

  37. W.C. Moss, J. Appl. Phys. 57 (5), pp. 1665–1670 (1985).

    Google Scholar 

  38. W.C. Moss, J. Appl. Phys. 55 (7), pp. 2741–2746 (1984).

    Google Scholar 

  39. J.R. Asay and L.C. Chhabildas, in: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 417–431.

    Google Scholar 

  40. D.E. Grady and J.R. Asay, J. Appl. Phys. 53 (11), pp. 7350–7354 (1982).

    Article  ADS  Google Scholar 

  41. D.E. Grady, J. de Physique 1V 1, pp. 653–660 (1991).

    Google Scholar 

  42. J. Lipkin and J.R. Amy, J. AppL Phys. 48 (1), pp. 182–189 (1977).

    Article  ADS  Google Scholar 

  43. L.C. Chhabildas, J.L. Wise, and J.R. Amy: Shock Waves in Condensed Matter— 1981 (eds. W.J. Nellis, L. Seaman, and R.A. Graham) American Institute of Physics, New York, (1982), pp. 422–426.

    Google Scholar 

  44. L.M. Barker and R.E. Hollenbach, J. AppL Phys. 45 (11), pp. 4872–4887 (1974).

    Article  ADS  Google Scholar 

  45. D.C. Wallace, Phys. Rev. B 22 (4), pp. 1477–1484 (1980).

    Google Scholar 

  46. D.C. Wallace, Phys. Rev. B 24 (10), pp. 5597–5605 (1981).

    Google Scholar 

  47. P.V. Makarov, Doklady 1V All-Union conference on detonation. M.: O1KhPh AN SSSR, 1987. V. 2. P. 115–121.

    Google Scholar 

  48. L.L Sedov,Mechanics of Úhe Solid State,Nauka, Moscow, (1983).

    Google Scholar 

  49. B.L.Rozhdestvenskii and N.N.Ynenko, Systems of QuasilinearEquations and Applications to Gas Dynamics, Nauka, Moscow, (1977).

    Google Scholar 

  50. A.R. Champion and R.W. Rohde, J. Appl. Phys. 41 (5), pp. 2213–2222 (1970).

    Article  ADS  Google Scholar 

  51. D.C. Wallace, Phys. Rev. B 22 (4), pp. 1495–1502 (1980).

    Google Scholar 

  52. J.J. Gilman, The Microdynamic Theory ofPlasticity,Metallurgia, pp. 18–37 (1972).

    Google Scholar 

  53. J.M. Kelly and P.P. Gillis, J. Appl. Phys. 45 (3), pp. 1091–1096 (1974).

    Article  ADS  Google Scholar 

  54. P.V. Makarov and V.A. Skripnyik, On the Influence of Heterogeneous Nucleation of Dislocations on Attenuation of an Elastic Precursor in Metals, Deposit No. 5411–82, VINITI, (1982). 33 p.

    Google Scholar 

  55. J.E. Vorthman and G.E. Duvall, J. Appl.Phys. 53 (5), pp. 3607–3615 (1982).

    Article  ADS  Google Scholar 

  56. L. Davison, A.L. Stevens, and M.E. Kipp, J. Mech. Phys. Solids 1, p. 25 (1977).

    Google Scholar 

  57. P.V. Makarov, Comb. Expl. Shock Waves 23 (1), pp. 19–25 (1987).

    Article  Google Scholar 

  58. P.V. Makarov, Fiz. Gor. Vzr. 23 (1), pp. 22–28 (1987).

    Google Scholar 

  59. P.V. Makarov and V.A. Skripnyik, in: Mechanics of Continuous States, Izdat Tomsk Univ., Tomsk (1983), pp. 123–131.

    Google Scholar 

  60. D. Gerlich and S. Hart, J. Appl. Phys. 55 (4), pp. 880–884 (1983).

    Article  ADS  Google Scholar 

  61. F.J. Zerilli and R.W. Armstrong, J. Appl. Phys. 38 (13), pp. 5395–5403 (1967).

    Article  Google Scholar 

  62. R. Kinslow (ed.), High-Velocity Impact Phenomena, Academic Press, New York, (1970).

    Google Scholar 

  63. D.J. Steinberg, S.G. Cochran, and M.W. Guinan, J. Appl. Phys. 51 (3), pp. 1498–1504 (1980).

    Article  ADS  Google Scholar 

  64. A.F. Guillermet, J. Phys. Chem. Solids. 47 (6), pp. 605–607 (1986).

    Google Scholar 

  65. M.W. Guinan and D.J. Steinberg, J. Phys. Chem. Solids 35, pp. 1501–1512 (1974).

    Article  ADS  Google Scholar 

  66. J.P. Romain, A. Migault, and J. Jacquesson, J. Phys. Chem. Solids 37 (12), pp. 1159–1165 (1976).

    Article  ADS  Google Scholar 

  67. P.V.Makarov and V.A. Skripnyik, Modification of Yilkinson’s Difference Plan for Calculation of Loading Waves in a Material with Relaxation Processes, Dep. No. 394–82,VINITI, (1982). 24 p.

    Google Scholar 

  68. R.D. Richtmeyer and K.W. Morton, Difference Methods for Initial-value Problems, Interscience, New York (1967).

    Google Scholar 

  69. R.J. Clifton and X. Markensoff, J. Mech. Phys. Solids 29 (3), pp. 227–251 (1981).

    Article  ADS  MATH  Google Scholar 

  70. P.J.A. Fuller and J.H. Price, Brit. J. Appl. Phys. 2, Ser. 2, pp. 275–286 (1969).

    ADS  Google Scholar 

  71. Z. Rosenberg, Y. Partom, and D. Yasiv, J. Appl. Phys. 56 (1), pp. 143–146 (1984).

    Article  ADS  Google Scholar 

  72. W. Mock, J.H. Holt, and W.H. Holt, J. Appl. Phys. 53 (2), pp. 5660–5668 (1982).

    Article  ADS  Google Scholar 

  73. J.R. Rice, J. Mech. Phys. Solids 19, pp. 433–455 (1971).

    Google Scholar 

  74. L.V. A1’tshuler and B.S. Chekin, J. Appl. Mech Tech. Phys. 28 (6), pp. 910–918 (1987).

    Article  ADS  Google Scholar 

  75. L.V. A1’tshuler and B.S. Chekin, Zh. Prikl. Mekh. Tekh. Fiz. 28 (6), pp. 119–128 (1987).

    Google Scholar 

  76. Yu.V. Bat’kov, S.A. Novikov, and A.V. Chernov, Comb. Expl. Shock Waves 22 (2), pp. 238–244 (1986).

    Article  Google Scholar 

  77. Yu.V. Bat’kov, S.A. Novikov, and A.V. Chernov, Fiz. Gor. Vzr. 22 (2), pp. 114–120 (1986).

    Google Scholar 

  78. Yu.V. Bat’kov, B.L. Glushak, and S.A. Novikov, Comb. Expl. Shock Waves 25 (5), pp. 635–640 (1989).

    Article  Google Scholar 

  79. Yu.V. Bat’kov, B.L. Glushak, and S.A. Novikov, Fiz. Gor. Vzr. 25 (5), pp. 126–132 (1989).

    Google Scholar 

  80. Yu. V. Bat’kov, S.A. Novikov, L.M. Sinitzyna, and A.V. Chemov, Strength of Materials (5), p. 60 (1981).

    Google Scholar 

  81. Yu. V. Bat’kov, S.A. Novikov, L.M. Sinitzyna, and A.V. Chemov, Problemi Prochnosty (5), pp. 126–132 (1981).

    Google Scholar 

  82. G.R. Cowan, Trans. Met. Soc. AIME 233, pp. 1120–1130 (1965).

    Google Scholar 

  83. D.B. Hayes and D.E. Grady, in: Shock Waves in Condensed Matter-1981 (eds. W.J. Nellis, L. Seaman, and RA. Graham) American Institute of Physics, New York, (1982), p. 412–416.

    Google Scholar 

  84. J.M. Kelly, Int. J. Solids Structures 7, pp. 1211–1217 (1971).

    Google Scholar 

  85. C.H. Li and R.J. Clifton, in: Shock Waves in Condensed Matter-1981 (eds. W.J. Nellis, L. Seaman, and RA. Graham) American Institute of Physics, New York, (1982), pp. 360–366.

    Google Scholar 

  86. Y. Maron and A.E. Blaugrund, J. Appt Phys. 53 (1), pp. 356–364 (1982).

    Article  ADS  Google Scholar 

  87. H. Mecking and U.F. Kocks, Acta Met 29 (11), pp. 1865–1877 (1981).

    Article  Google Scholar 

  88. D.L. Tonks, J. AppL Phys. 70 (8), pp. 4233–4237 (1991).

    Google Scholar 

  89. D.L. Tonks, J. AppL Phys. 66 (5), pp. 1951–1960 (1989).

    Google Scholar 

  90. J.R. Amy and L.C. Chhabildas: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 110–120.

    Google Scholar 

  91. M.A. Meyers, H.D. Kuntze, and K. Safert: Shock Waves and High-Strain Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 61–67.

    Book  Google Scholar 

  92. P. Pejin and A. Savchuk, in: Problems of the Theory of Plasticity and Creep (ed. Shapiro) Mir, Moscow (1979), pp. 94–202.

    Google Scholar 

  93. V.P. Glazurin and T.M. Platova, The Engineering Physics Collection, Tomsk: Izdat Tomsk..Univ., (1987), pp. 101–109.

    Google Scholar 

  94. L.V. Al’tshuler, M.I. Brazhnik, and G.S. Telegin, J. Appt Mech Tech. Phys. 12 pp. 921–926 (1971).

    Article  ADS  Google Scholar 

  95. L.V. Al’tshuler, M.I. Brazhnik, and G.S. Telegin, Prik L Mekh. Tekh. Fiz. 6, pp. 159–166 (1971).

    Google Scholar 

  96. J.L. Wise, L.C. Chhabildas, and J.R. Amy, in: Shock Waves in Condensed Matter-1981 (eds. W.J. Nellis, L. Seaman, and R.A. Graham) American Institute of Physics, New York, (1982), pp. 417–421.

    Google Scholar 

  97. C.S. Coffey and R.W. Armstrong: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 89–97.

    Google Scholar 

  98. J. Krejci, J. Brezina, J. Buchar, and S. Rolc, J. de Physique 1V 1, pp. 667–673 (1991).

    Google Scholar 

  99. D.L. Moss, in: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 30–40.

    Google Scholar 

  100. D.F. Meskal and M. Azrin: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 67–89.

    Google Scholar 

  101. S.M. Doreuvily, V. Gopinethen, and V.K. Venkatesh, in: Shock Waves and HighStrain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 294–301.

    Google Scholar 

  102. V.P. Glazurin, P.V. Makarov, and T.M. Platova, in: Applied Problems of Deformable Bodies, Izdat Tomsk Univ., Tomsk, (1980), pp. 14–18.

    Google Scholar 

  103. P.V. Makarov, T.M. Platova, and V.A. Skripnyik, Comb. Expl. Shock Waves 19 (2), p. 645 (1983).

    Article  Google Scholar 

  104. P.V. Makarov, T.M. Platova, and V.A. Skripnyik, Fiz. Gor. Vzr. 5, pp. 123–126 (1983).

    Google Scholar 

  105. L.C. Chhabildas and J.R. Asay, J. AppL Phys. 50 (4), pp. 2749–2756 (1979).

    Article  ADS  Google Scholar 

  106. H.L. Chang and Y. Horie, J. Appl. Phys. 43 (8), pp. 3362–3366 (1972).

    Google Scholar 

  107. Y. Partom: Shock Compression of Condensed Matter-1989 (eds. S.C. Schmidt, J.N. Johnson, and L.W. Davison) North-Holland, Amsterdam, (1990), pp. 317–319.

    Google Scholar 

  108. L.E. Murr, in: Shock Waves and High-Strain-Rate Phenomena in Metals, (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, (1981), pp. 260–276.

    Google Scholar 

  109. G.W. Swan and G.E. Duvall, J. Mech. Phys. Solids 21, pp. 215–227 (1973).

    Article  ADS  MATH  Google Scholar 

  110. J.R. Asay and D.B. Hayes, J. Appt. Phys. 46 (11), pp. 4789–4800 (1975).

    Article  ADS  Google Scholar 

  111. Yu.I. Mesheryakov, A.K. Divakov, and V.G. Kudrushov, Comb. Expl. Shock Waves 24 (2), pp. 241–248 (1988).

    Article  Google Scholar 

  112. Yu.I. Mesheryakov, A.K. Divakov, and V.G. Kudrushov, Fiz. Gor. Vzr. 24 (2), pp. 126–134 (1988).

    Google Scholar 

  113. Yu.I. Mesheryakov, Trans. Int. Cont. on New Methods in Physics and Mechanics of a Deformable Solid Body, Izdat Tomsk Univ., Tomsk, (1990), pp. 33–43.

    Google Scholar 

  114. Yu.I. Mesherykov and S.A. Atroshenko, Izv. vuzov. Ser. physics (4), pp 105–123 (1992).

    Google Scholar 

  115. S.K. Godunov, Devices of a Mechanics offContinuua, Nauka, Moscow, (1978). 303 p. (in Russian)

    Google Scholar 

  116. Ya.B. Zel’dovich and Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. I (1966) and Vol. II (1967), Academic Press, New York. Reprinted in a single volume by Dover Publications, Mineola, New York (2002).

    Google Scholar 

  117. D.J. Steinberg, J.AppL Phys. 74 (6), pp. 3827–3831 (1993).

    Google Scholar 

  118. D.J. Steinberg, Equation of State and Strength Properties of Selected Materials, Lawrence Livermore National Laboratory Report, (1991), 39 p.

    Google Scholar 

  119. J.W. Swegle and D.E. Grady, J. Appl. Phys. 58 (2), pp. 692–701 (1985).

    Article  ADS  Google Scholar 

  120. J.W. Taylor, J. Appt. Phys. 35 (36), p. 3440 (1965).

    Google Scholar 

  121. S.G. Cochran and D. Banner, J. Appl. Phys 48, pp. 2729–2737 (1977).

    Article  ADS  Google Scholar 

  122. N.Kh. Akhmadeev, N.A. Akhmadeev, and R.I. Nigmatulin, J. Appt. Mech Tech. Phys. 25 (6), pp. 908–914 (1984).

    Article  ADS  Google Scholar 

  123. N.Kh. Akhmadeev, N.A. Akhmadeev, and R.I. Nigmatulin, Zh. Prikl. Mekh. Tekh. Fiz. 25 (6), pp. 113–119 (1984).

    Google Scholar 

  124. K.W. Schuler and J.W. Nunziato, J. Appl. Phys. 47 (7), pp. 2995–2998 (1976).

    Article  ADS  Google Scholar 

  125. J.W. Nunziato and K.W. Schuler, J. Appt. Phys. 44 (10), pp. 4774–4775 (1973).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Makarov, P.V. (2004). Shear Strength and Viscosity of Metals in Shock Waves. In: Fortov, V.E., Al’tshuler, L.V., Trunin, R.F., Funtikov, A.I. (eds) High-Pressure Shock Compression of Solids VII. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4048-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4048-6_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1919-9

  • Online ISBN: 978-1-4757-4048-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics