Skip to main content

Public Health Surveillance: The Role of Clinical Information Systems

  • Chapter
Healthcare Information Management Systems

Abstract

Health departments across the United States have begun collecting new types of surveillance data from hospitals in near real time. In New York City, Boston, and Washington, D.C., for example, hospitals send daily reports of patient visits to emergency departments to the respective health departments [1–3]. Hospitals in Utah and the Commonwealth of Pennsylvania send such data in real time via health level seven (HL7) interfaces [1]. Similar projects are under way in other states [4].

This primer on public health surveillance and clinical information systems draws on actual experiences in exploring the synergy between both systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lober WB, Thomas Karras B, Wagner MM, et al. Roundtable on bioterrorism detection: information system-based surveillance. J Am Med Inform Assoc 2002; 9 (2): 105–115.

    Article  PubMed  Google Scholar 

  2. Anonymous. Syndromic surveillance for bioterrorism following the attacks on the World Trade Center—New York City, 2001. MMWR (Morb Mortal WKLY Rep) 2002; 51: 13–15.

    Google Scholar 

  3. Green MS, Kaufman Z. Surveillance systems for early detection and mapping of the spread of morbidity caused by bioterrorism. Harefuah 2002; 141: 31–33.

    PubMed  Google Scholar 

  4. Tsui F-C, Espino JU, Wagner MM, et al. Data, network, and application: technical description of the Utah RODS Winter Olympic Biosurveillance System. Proc AMIA Symp 2002.

    Google Scholar 

  5. Tsui F-C, Wagner MM, Dato V, Chang C-CH. Value of ICD-9-coded chief complaints for detection of epidemics. Proc AMIA Symp 2001; 711–715.

    Google Scholar 

  6. Quenel P, Dab W, Hannoun C, Cohen JM. Sensitivity, specificity and predictive values of health service based indicators for the surveillance of influenza A epidemics. Int J Epidemiol 1994; 23 (4): 849–855.

    Article  PubMed  CAS  Google Scholar 

  7. Brinsfield K, Gunn J. Using volume-based surveillance for an outbreak early warning system. Acad Emerg Med 2001; 8 (5): 492.

    Google Scholar 

  8. Welliver RC, Cherry JD, Boyer KM, et al. Sales of nonprescription cold remedies: a unique method of influenza surveillance. Pediatr Res 1979; 13 (9): 1015–1017.

    Article  PubMed  CAS  Google Scholar 

  9. Roush S, Birkhead G, Koo D, Cobb A, Fleming D. Mandatory reporting of diseases and conditions by health care professionals and laboratories. JAMA 2001; 282 (2): 164–170.

    Article  Google Scholar 

  10. Department of Defense. Chemical and Biological Defense Program: annual report to Congress. 2000.

    Google Scholar 

  11. NATO handbook on the medical aspects of NBC defensive operations AMedP-6(B). NATO; 1996. [Army Field Manual 8–9; Navy Medical Publication 5059; Air Force Joint Manual 44–151.]

    Google Scholar 

  12. Anonymous. Biological Diseases/Agents List (online) 2002 (cited 2002; 12/20). Available from: http://www.bt.cdc.gov/Agent/agentlist.asp.

  13. Dato V, Wagner M, Allswede M, Aryel R, Fapohunda A. The nation’s current capacity for the early detection of public health threats including bioterrorism. Washington, DC: Agency for Healthcare Research and Quality; 2001.

    Google Scholar 

  14. Meselson M, Guillemin J, Hugh-Jones M, et al. The Sverdlovsk anthrax outbreak of 1979. Science 1994; 266 (5188): 1202–1208.

    Article  PubMed  CAS  Google Scholar 

  15. O’Toole T. Smallpox: an attack scenario. Emerg Infect Dis 1999; 5 (4): 540–546.

    Article  PubMed  Google Scholar 

  16. Buehler J. Surveillance. In: Rothman K, Greenland S, editors. Modern epidemiology, 2nd ed. Philadelphia: Lippincott-Raven; 1998.

    Google Scholar 

  17. Wagner M, Tsui F-C, Espino J, et al. The emerging science of very early detection of disease outbreaks. J Public Health Manag Pract 2001; 6 (6): 50–58.

    Google Scholar 

  18. Centers for Disease Control and Prevention. Preventing emerging infectious diseases: a strategy for the 21st century (online) 2000 (cited 2001 April 30). Available from: http://www.cdc.gov/ncidod/emergplan/.

  19. Wagner MM, Aryel R, Dato V. Availability and comparative value of data elements required for an effective bioterrorism detection system. Washington, DC: Agency for Healthcare Research and Quality; 2001 (11/28/01).

    Google Scholar 

  20. National Electronic Disease Surveillance System (NEDSS): a standards-based approach to connect public health and clinical medicine. J Public Health Manag Pract 2001;7(6):43– 50.

    Google Scholar 

  21. Espino J, Wagner M. The accuracy of ICD-9 coded chief complaints for detection of acute respiratory illness. Proc AMIA Symp 2001; 164–168.

    Google Scholar 

  22. Effler P, Ching-Lee M, Bogard A, Man-Cheng L, Nekomoto T, Jernigan D. Statewide system of electronic notifiable disease reporting from clinical laboratories: comparing automated reporting with conventional methods. JAMA 1999; 282 (19): 1845–1850.

    Article  PubMed  CAS  Google Scholar 

  23. Panackal AA, M’ikanatha NM, Tsui F-C, et al. Automatic electronic laboratory-based reporting of notifiable infectious diseases. Emerg Infect Dis 2001; 8 (7): 685–691.

    Article  Google Scholar 

  24. Jain NL, Knirsch CA, Friedman C, Hripcsak G. Identification of suspected tuberculosis patients based on natural language processing of chest radiograph reports. Proc AMIA Ann Fall Symp 1996; 542–546.

    Google Scholar 

  25. Fiszman M, Chapman WW, Aronsky D, Evans RS, Haug PJ. Automatic detection of acute bacterial pneumonia from chest X-ray reports. J Am Med Inform Assoc 2000; 7 (6): 593–604.

    Article  PubMed  CAS  Google Scholar 

  26. Chapman W, Haug P. Comparing expert systems for identifying chest x-ray reports that support pneumonia. Proc AMIA Symp 1999; 216–220.

    Google Scholar 

  27. Chapman WW, Fizman M, Chapman BE, Haug PJ. A comparison of classification algorithms to automatically identify chest X-ray reports that support pneumonia. J Biomed Inform 2001; 34 (1): 4–14.

    Article  PubMed  CAS  Google Scholar 

  28. Hripcsak G, Knirsch C, Jain N, Stazesky RJ, Pablos-Mendez A, Fulmer T. A health information network for managing innercity tuberculosis: bridging clinical care, public health, and home care. Comput Biomed Res 1999; 32 (1): 67–76.

    Article  PubMed  CAS  Google Scholar 

  29. Knirsch C, Jain N, Pablos-Mendez A, Friedman C, Hripcsak G. Respiratory isolation of tuberculosis patients using clinical guidelines and an automated clinical decision support system. Infect Control Hosp Epidemiol 1998; 19 (2): 94–100.

    Article  PubMed  CAS  Google Scholar 

  30. Sittig DF, Stead WW. Computer-based physician order entry: the state of the art. J Am Med Inform Assoc 1994; 1 (2): 108–123.

    Article  PubMed  CAS  Google Scholar 

  31. Bates DW, Boyle DL, Teich JM. Impact of computerized physician order entry on physician time. In: Proceedings of the annual symposium on computer applications in medical care. 1994. p. 996.

    Google Scholar 

  32. McDonald CJ, Tierney WM, Overhage JM, et al. The Regenstrief Medical Record System— experience with MD order entry and community-wide extensions. Proceedings of the annual symposium on computer applications in medical care 1994. p. 1059.

    Google Scholar 

  33. Tierney WM, Miller ME, Overhage JM, McDonald CJ. Physician inpatient order writing on microcomputer workstations: effects on resource utilization. JAMA 1993;269(3):379– 383.

    Google Scholar 

  34. McDonald CJ. Protocol-based computer reminders, the quality of care and the non-perfectibility of man. N Engl J Med 1976; 295: 1351–1355.

    Article  PubMed  CAS  Google Scholar 

  35. McDonald CJ, Hui SL, Smith DM, et al. Reminders to physicians from an introspective computer medical record. Ann Intern Med 1984; 100 (1): 130–138.

    PubMed  CAS  Google Scholar 

  36. Frame P. Can computerized reminder systems have an impact on preventive services in practice? J Gen Intern Med 1990; 5 (suppl 5): S112–S115.

    Article  PubMed  CAS  Google Scholar 

  37. Winickoff R, Coltin K, Fleishman S, Barnett G. Semiautomated reminder system for improving syphilis management. J Gen Intern Med 1986; 1 (2): 78–84.

    Article  PubMed  CAS  Google Scholar 

  38. Ornstein SM, Garr DR, Jenkins RG, Rust PF, Arnon A. Computer-generated physician and patient reminders. Tools to improve population adherence to selected preventive services. J Fam Pract 1991; 32: 82–90.

    PubMed  CAS  Google Scholar 

  39. Rind DM, Safran C, Russell SP, et al. The effect of computer-based reminders on the management of hospitalized patients with worsening renal function. In: Clayton PD, editor. Proceedings of the fifteenth annual symposium on computer applications in medical care. Washington, DC: McGraw-Hill; 1993. p. 28–32.

    Google Scholar 

  40. McDonald CJ, Hui SL, Tierney WM. Effects of computer reminders for influenza vaccination on morbidity during influenza epidemics. MD Comput 1992; 9 (5): 304–312.

    PubMed  CAS  Google Scholar 

  41. McDonald C. Action-oriented decisions in ambulatory medicine. Chicago: Year Book Medical; 1981.

    Google Scholar 

  42. McDonald CJ. Use of a computer to detect and respond to clinical events: its effect on clinician behavior. Ann Intern Med 1976; 84 (2): 162–167.

    CAS  Google Scholar 

  43. Bradshaw KE. A computerized laboratory alerting system to warn of life threatening events. PhD dissertation, University of Utah, Department of Medical Informatics. 1988.

    Google Scholar 

  44. Kuperman GJ, Gardner RM, Pryor AT. HELP: a dynamic hospital information system. New York: Springer-Verlag;1991.

    Google Scholar 

  45. Rind DM, Safran C, Russell SP, et al. Effect of computer-based alerts on the treatment and outcomes of hospitalized patients. Arch Intern Med 1994; 154: 1511–1517.

    Article  PubMed  CAS  Google Scholar 

  46. Hripcsak G, Clayton P, Jenders R, Cimino J, Johnson S. Design of a clinical event monitor. Comput Biomed Res 1996; 29: 194–221.

    Article  PubMed  CAS  Google Scholar 

  47. Hripcsak G, Knirsch C, Jain N, Pablos-Mendez A. Automated tuberculosis detection. J Am Med Inform Assoc 1997; 4 (5): 376–381.

    Article  PubMed  CAS  Google Scholar 

  48. Classen D, Pestotnik S, Evans R, Burke J. Description of a computerized adverse drug event monitor using a hospital information system. Hosp Pharm 1992; 27 (9): 776–779.

    Google Scholar 

  49. Evans R, Larsen R, Burke J, et al. Computer surveillance of hospital acquired infections and antibiotic use. JAMA 1986; 265: 1007–1011.

    Article  Google Scholar 

  50. Kahn M, Steib S, Fraser V, Dunagan W. An expert system for culture-based infection control surveillance. In: Proceedings of the annual symposium on computer applications in medical care. 1993. p. 171–175.

    Google Scholar 

  51. Larsen RA, Evans RS, Burke JP, Pestotnik SL, Gardner RM, Classen DC. Improved perioperative antibiotic use and reduced surgical wound infections through the use of computer decision analysis. Infect Control Hosp Epidemiol 1989; 10: 316–320.

    Article  PubMed  CAS  Google Scholar 

  52. Wagner M, Pankaskie M, Hogan W, Tsui F, Vries J. Clinical event monitoring at the University of Pittsburgh. Proc AMIA Symp 1997; 188–192.

    Google Scholar 

  53. Wagner M, Tsui F, Pike J, Pike L. Design of a clinical notification system. Proc AMIA Symp 1999; 989–994.

    Google Scholar 

  54. Wagner M, Eisenstadt S, Hogan W, Pankaskie M. Preferences of interns and residents among e-mail, paging, and traditional methods for the delivery of different types of clinical information. Proc AMIA Symp 1998; 140–144.

    Google Scholar 

  55. Tsui F-C, Wagner M, Wilbright W. A feasibility study of two methods for end-user configuration of a clinical event monitor. Proc AMIA Symp 1999; 975–978.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wagner, M.M., Espino, J.U., Tsui, FC., Aryel, R.M. (2004). Public Health Surveillance: The Role of Clinical Information Systems. In: Ball, M.J., Weaver, C.A., Kiel, J.M. (eds) Healthcare Information Management Systems. Health Informatics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4041-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4041-7_39

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2350-9

  • Online ISBN: 978-1-4757-4041-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics