Skip to main content

Multiscale Discrete-Integral Strength Criteria. Satellite Nucleation of Microcracks

  • Chapter
  • 538 Accesses

Abstract

The process of quasi-static growth of flat cracks in solids with regular structures is investigated. The structures are considered, every of which is characterized by one linear size. The correlated discrete-integral criteria of strength for every structure are proposed. Three correlated criteria are formulated, these are for a porous body, a granular material and a material with an ideal crystal lattice. The estimations of critical stress intensity factor (SIF) and critical lengths of cracks are obtained. The critical loads are evaluated in dependence on geometrical and force parameters. The modifications of the proposed criteria for second and third problems allow to describe the satellite nucleation of microcrack in the vicinity of macrocrack tip.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Wieghard, Uber das Spalten und Zerreiben elastischer Korper, Z. Math. und Phys., 55, 60–103 (1907).

    Google Scholar 

  2. H. Neuber, Kerbspannungslehre: Grunglagen fur genaue spannungsrechnung, Verlag von J. Springer, Berlin (1937).

    Google Scholar 

  3. V.V. Novozhilov, About the Necessary and Sufficient Criterion of Brittle Strength, Prikl. Mat. Mekh., 33, 2, 212–222 (1969).

    Google Scholar 

  4. A.V. Andreev, V.M. Kornev and Yu.V. Tikhomirov, Breaking of Atomic Bonds at the Apex Crack. Loss of Stability of Part of a Chain of Atoms, Izv. RAN. Mekh. Tverd. Tela, 28, 5, 135–146 (1993).

    Google Scholar 

  5. V.M. Kornev and Yu.V. Tikhomirov, A Brittle Fracture Criterion For Cracked Bodies in the Presence of Atomic Lattice Defects, Izv. RAN. Mekh. Tverd. Tela, 29, 2, 185193 (1994).

    Google Scholar 

  6. V.M. Kornev, Integral Criteria for Brittle Strength of Cracked Bodies with Defects in the Presence of Vacancies at the Tip of a Crack. Strength of Compacted Ceramics-Type Bodies, J OfAppl. Mech. and Techn. Physics, 37, 5, 756–764 (1996).

    Article  Google Scholar 

  7. S.E. Mikhailov, A Functional Approach to Non-local Strength Conditions and Fracture criteria - I. Body and Point Fracture, Engineering Fracture Mechanics, 52, 4, 731743 (1995).

    Google Scholar 

  8. S.E. Mikhailov, A Functional Approach to Non-local Strength Conditions and Fracture Criteria–I. Discrete Fracture, Engineering Fracture Mechanics, 52, 4, 745–754 (1995).

    Article  Google Scholar 

  9. V.V. Adishchev and V.M. Kornev, The Approach to Constructing of the Brittle Strength Criterion for Cracked Porous Solids, Izv. Vuzov. Stroitel’stvo, 7, 41–45 (1997).

    Google Scholar 

  10. V.V. Adishchev, V.M. Kornev and A.G. Demeshkin, The Experimental Approbation of the Crack Initiation Criterion in Regularly-Inhomogenous Medium, Izv. Vuzov. Stroitel’stvo, 6, 130–133 (1998).

    Google Scholar 

  11. V.V. Adishchev, A.G. Demeshkin and V.M. Kornev, The Brittle Fracture Criteria for Porous Media of Regular Structure with Mesodamages. The Comparison with Experimental Data, Preprint/RAS. Siberian Division. Institute of Hydrodynamics, Novosibirsk, 3, 19 (1998).

    Google Scholar 

  12. V.M. Kornev and L.I. Razvorotneva, The Comparative Estimates of the Strength of Dry and Wet Quartz in grinding, J. Of Appl. Mech. and Techn. Physics, 39, 1, 121–126 (1998).

    Article  CAS  Google Scholar 

  13. V.M. Kornev, Strength Reduction of Metals upon Hydrogen Chemisorption at the Tip of a Crack, J. OfAppl. Mech. and Techn. Physics, 39, 3, 476–480 (1998).

    Article  CAS  Google Scholar 

  14. V.M. Kornev and L.I. Razvorotneva, Brittle Fracture of Cracked Solids as Affected by Surfactants, in: Damage and Fracture Mechanics. Computer Aided Assessment and Control, C.A. Brebbia and A. Carpinteri, ed., Computational Mechanics Publications, Southampton and Boston, 565–574 (1998).

    Google Scholar 

  15. R.J. Stokes, Microscopic Aspects of Fracture in Ceramics, in: Fracture, H. Liebowitz, ed., Fracture of Nonmetals and Composites, Academic Press, New York and London, 7, 157–241 (1972).

    Google Scholar 

  16. R.L. Coble and N.M. Parikh, Fracture in Polycrystalline Ceramics, in: Fracture, H. Liebowitz, ed., Fracture of Nonmetals and Composites, Academic Press, New York and London, 7, 243–314 (1972).

    Google Scholar 

  17. N.H. Macmillan, The Ideal Strength of Solids, in: Atomistics of Fracture, R.M. Latanision and J.R. Pickens, eds., Plenum press, New York and London, 95–164 (1983).

    Google Scholar 

  18. S.E. Mikhailov and S. Bavaglia, Application of Non-local Failure Criterion to a Crack in Heterogeneous media, in: Damage and Fracture Mechanics. Computer Aided Assessment and Control, C.A. Brebbia and A. Carpinteri, eds., Computational Mechanics Publications, Southampton and Boston, 155–164 (1998).

    Google Scholar 

  19. S.E. Mikhailov, A Functional Approach to Non-local Strength Conditions at Multiaxial Loading, in: Damage and Fracture Mechanics. Computer Aided Assessment and Control, C.A. Brebbia and A. Carpinteri, eds., Computational Mechanics Publications, Southampton and Boston, 429–438 (1998).

    Google Scholar 

  20. M.P. Savruk, The Stress Intensity Factors in Cracked Solids, Fracture Mechanics and Material Strength, Naukova Dumka, Kiev, 2 (1988).

    Google Scholar 

  21. V.M. Yentov, On the Role of Material Structure in Fracture Mechanics, Izv. AN USSR, Mekh. Tverd. Tela, 3, 110–118 (1976).

    Google Scholar 

  22. L.T. Berezhnitskii, V.V. Panas’uk and R.G. Arone, On the Problem of Interaction Between Cracks Placed along a Straight Line, Physical-chemical Mechanics of Materials, 7, 2, 64–67 (1971).

    Google Scholar 

  23. I. Tsukrov and M. Kachanov, Brittle-elastic Solids with Interacting Noncircular Pores: Stress Concentrations and Microfracturing Patterns, in: Damage and Fracture Mechanics. Computer Aided Assessment and Control, C.A. Brebbia and A. Carpinteri, eds., Computational Mechanics Publications, Southampton and Boston, 515–523 (1998).

    Google Scholar 

  24. V.F. Zackay, W.W. Gerberich and E.R. Parker, Structural Modes of Fracture, in: Fracture, H. Liebowitz, ed., Microscopic and Macroscopic Fundamentals, Academic Press, New York and London, 1, 395–440 (1968).

    Google Scholar 

  25. N.F. Morozov, Problems of Brittle Fracture and Their Investigation by Methods of Elasticity Theory, in: Mechanics and scientific progress. Mekhanika Deformiruemogo Tverdogo Tela, Nauka, Moscow, 3, 54–63 (1988).

    Google Scholar 

  26. C.D. Beachem, Microscopic Fracture Processes, in: Fracture, H. Liebowitz, ed., Microscopic and Macroscopic Fundamentals, Academic Press, New York and London, 1, 395–440 (1968).

    Google Scholar 

  27. A.G. Evans, A.H. Heuer and D.L. Porter, The Fracture Toughness of Ceramics, in: Advances in Research on the Strength and Fracture of Materials, D.M.R. Taplin ed., An Overview: 4th Intern. Conf. on Fracture, Pergamon Press, New York, Oxford, Toronto, Sydney, Frankfurt and Paris, 1, 529–556 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kornev, V.M. (2002). Multiscale Discrete-Integral Strength Criteria. Satellite Nucleation of Microcracks. In: Bradt, R.C., Munz, D., Sakai, M., Shevchenko, V.Y., White, K. (eds) Fracture Mechanics of Ceramics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4019-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4019-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3370-6

  • Online ISBN: 978-1-4757-4019-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics