Skip to main content

Theoretical Investigation of Fracture Behaviour in Ferroelectric Ceramics

  • Chapter
Fracture Mechanics of Ceramics

Abstract

Ferro- and piezoelectric ceramics find a widespread application in many domains of technology. They are constituents of smart structures being included in composites together with metals or plastics, are used as actuators and sensors and play an important role in micro-system-technology. In order to supply knowledge about design features and strength criteria to improve the reliability and durability of components with smart ceramics, a more fundamental understanding about the process of fracture under combined mechanical and electrical loading is required. Therefore electromechanical experiments on DCB specimen are performed. Analytical and numerical methods for the stress analysis are introduced and their efficiency is verified. Furthermore, an analytical solution for the coupled field problem is derived on the basis of the Stroh formalism. Stress intensity factors, electric displacement intensity factors and energy release rates are calcutated and discussed with respect to a possible fracture criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Kuna, FEM-Techniken zur Analyse von Rissen unter elektrischen und mechanischen Beanspruchungen, in: 29. DVM Tagung AK Bruchvorgänge, Stuttgart, 369–379 (1997).

    Google Scholar 

  2. M. Kuna, Finite element analyses of crack problems in piezoelectric structures, Computational Materials Science, 13, 67–80 (1998).

    Article  CAS  Google Scholar 

  3. Y.E. Pak, Linear electro-elastic fracture mechanics of piezoelectric materials, Int. Journal of Fracture, 54, 79–100 (1992).

    Article  CAS  Google Scholar 

  4. F.F. Rybicki, and M.F. Kanninen, A finite element calculation of stress intensity factors by a modified crack closure integral, Engineering Fracture Mechanics, 9, 931–938, (1977).

    Article  Google Scholar 

  5. Y.E. Pak, Crack extention force in a piezoelectric material, J. Appl. Mech., 57, 647–653 (1990).

    Article  Google Scholar 

  6. M. Kuna, Energiebilanzintegrale fir risse in piezoelektrischen werkstoffen unter elektrischen und mechanischen beanspruchungen, Technische Mechanik, 15, 195204 (1995).

    Google Scholar 

  7. A.N. Stroh, Steady state problems in anisotropic elasticity, Journal Math. Phys., 41, 77103 (1962).

    Google Scholar 

  8. S. Park and C.-T. Sun, Effect of electric field on fracture of piezoelectric ceramics, Int. Journal of Fracture, 70, 203–216 (1995).

    Article  Google Scholar 

  9. A. Förderreuther, PhD Thesis, MPI Stuttgart, submitted (1999).

    Google Scholar 

  10. A. Ricoeur, M. Kuna, A. Förderreuther, and G. Thurn, Konzeption und Interpretation elektromechanischer DCB- und CT-Versuche an Funktionskeramiken, in: 31. DVM Tagung AK Bruchvorgänge, Darmstadt, 339–348 (1999).

    Google Scholar 

  11. S. Park, and C.-T. Sun, Fracture criteria for piezoelectric ceramics, J. Am. Ceram. Soc., 78, 6, 1475–80 (1995).

    Article  CAS  Google Scholar 

  12. K. Metha, and A.V. Virkar, Fracture mechanics in ferroelectric-ferroelastic lead zirconate titanate ceramics, J. Am. Ceram. Soc., 73, 3, 567–574 (1990).

    Article  Google Scholar 

  13. V. Heyer, G.A. Schneider, H. Weitzing, H. Balke, J. Drescher, H.-A. Bahr, and G. Kemmer, Fracture criterion for a conducting crack in piezoelectric ceramics, in: Proc.of the Int. Conf. and Exhibition Micro Materials MICRO MAT’97, B. Michel and T. Winkler, eds., Berlin, 630–633 (1997).

    Google Scholar 

  14. Y. Murakami, Stress intensity factors handbook, Pergamon Press (1987).

    Google Scholar 

  15. M. Kanninen, An augmented double cantilever beam model for studying crack propagation and arrest, Int. J. of Frac., 9, 1, 83–92 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuna, M., Ricoeur, A. (2002). Theoretical Investigation of Fracture Behaviour in Ferroelectric Ceramics. In: Bradt, R.C., Munz, D., Sakai, M., Shevchenko, V.Y., White, K. (eds) Fracture Mechanics of Ceramics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4019-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4019-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3370-6

  • Online ISBN: 978-1-4757-4019-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics