Skip to main content

Effect of Grain Size on Crack Growth in Alumina

  • Chapter
Fracture Mechanics of Ceramics

Abstract

The Fracture behaviour of alumina ceramics with grain sizes ranging from 2 to 13 µm is studied by means of Double Torsion and Single Edge Notched Beam methods. The R-Curve behaviour is found to increase with grain size as a consequence of increasing crack bridging effects. R-Curves were obtained by the SENB method with a conventional compliance analysis and with in-situ measurement of the crack size. The compliance analysis leads to an underestimation of the real crack size, thus of the real crack resistance,.especially on coarse grain microstructure. Only the coarse alumina exhibits a significant amount of rising crack resistance. Slow Crack Growth laws were obtained for the different ceramics by the relaxation test with the Double Torsion technique. The results obtained in different environments show that Slow Crack Growth is due to stress corrosion by water molecules at the crack tip. The increase of crack resistance with grain size is indicated by a shift of the V-KI (crack velocity versus applied stress intensity factor) law towards high KI values. Moreover, the slope of the curve is higher for higher grain sizes. However, if the R-Curve effect is subtracted in the analysis, a unique V-KItip (crack velocity versus stress intensity factor at the crack tip) law is obtained, independently of the grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Chantikul, S. Bennison, B. Lawn, J. Am. Ceram. Soc., 73, 8, 2419–27 (1990).

    Article  CAS  Google Scholar 

  2. R. Knehans and R. Steinbrech, in: Science of Ceramics, vol.12, P. Vincenzini, ed., Faenza, Italy, 613–19 (1984).

    Google Scholar 

  3. G. Vekinis, M.F. Ashby and P.W.R. Beaumont, Acta. Metall. Mater., 38, 6, 1151–62, (1990).

    Article  CAS  Google Scholar 

  4. P. Swanson, C. Fairbanks, B.R. Lawn, Y. Mai, B. Hockey, J. Am. Ceram. Soc., 70, 4, 279–89 (1987).

    Article  CAS  Google Scholar 

  5. G. Pezzotti, O. Sbaizero, V. Sergo, N. Muraki, K. Maruyama and T. Nishida, J Am. Ceram. Soc, 81, 1, 187–92 (1998).

    Article  CAS  Google Scholar 

  6. J. Roedel, J.F. Kelly and B.R. Lawn, J. Am. Ceram. Soc., 73, 3313–18 (1990).

    Article  Google Scholar 

  7. A. Osaka, A. Hirosaki and M. Yoshimura, J. Am. Ceram. Soc., 73, 7, 2095–96 (1990).

    Article  Google Scholar 

  8. F. Deuhler, K. Knehans and R. Steinbrech, Fortschrittsberichte der Deutschen Keramischen Gesellschaft, 1, 51 (1985).

    Google Scholar 

  9. T. Fett and D. Munz, J. Am. Ceram. Soc., 75, 4, 958–63 (1992).

    Article  CAS  Google Scholar 

  10. H. Kishimoto, A. Ueno, S. Okawa and H. Kawara, J. Am. Ceram. Soc., 77, 5, 1324–28 (1994).

    Article  CAS  Google Scholar 

  11. S. Lathabai, J. Roedel and B. Lawn, J. Am. Ceram. Soc., 74, 1340 (1991).

    Article  CAS  Google Scholar 

  12. T. Fett and D. Munz, J. Mat. Sci. Lett., 12, 352–54 (1993).

    Article  CAS  Google Scholar 

  13. D. Jacobs and I.W. Chen, J. Am. Ceram. Soc, 78, 3, 513–20 (1995).

    Article  CAS  Google Scholar 

  14. T. Fett and D. Munz, J. Mat. Sci. Lett., 17, 307 (1998).

    Article  CAS  Google Scholar 

  15. M.P. Harmer, in: Advances in Ceramics, Vol. 10: Structure and Properties of MgO and Al2O3 Ceramics, 679–96 (1984).

    Google Scholar 

  16. N.J. Shaw and R.J. Brook, J. Am. Ceram. Soc., 69, 2 107–10 (1986).

    Article  CAS  Google Scholar 

  17. H. Abdizadeh, PhD Thesis, INSA de Lyon, France (1997).

    Google Scholar 

  18. T. Fett, Engeering Fracture Mechanics, 52, 5, 803–10 (1995).

    Article  Google Scholar 

  19. D.P. Williams and A.G. Evans, JTEVA, 1, N°4, 7, 264–270 (1973).

    Google Scholar 

  20. B.J. Plekta, E.R. Fuller, and B.G. Koepke, in: Fracture Mechanics Applied to Brittle Materials, Proceedings of the 11th symposium on fracture mechanics, part II, ASTM STP 678, S.W. Freiman, ed., 19–38, (1979).

    Google Scholar 

  21. J. Chevalier, M. Saadaoui, C. Olagnon, and G. Fantozzi, Ceram.Inter., 22, 171–177 (1996).

    Article  CAS  Google Scholar 

  22. T.A. Michalske and S.W. Freiman, J. Am. Ceram. Soc., 66, 4, 284–88 (1983).

    Article  CAS  Google Scholar 

  23. B.R. Lawn, J. Am. Ceram. Soc., 66, 2, 83–91 (1983).

    Article  Google Scholar 

  24. S.M. Wiederhorn, in NBS special publication, mechanical and thermal properties of ceramics, 303, 217–41 (1969).

    Google Scholar 

  25. S.M. Wiederhorn and L.H. Boltz, J. Am. Ceram. Soc., 53, 553 (1970).

    Google Scholar 

  26. B.R. Lawn, Fracture of Brittle Solids, Second Edition, Cambridge University Press, 380 pages (1993).

    Google Scholar 

  27. T.A. Michalske, B.C. Bunker and S.W. Freiman, J. Am. Ceram. Soc., 69, 10, 721–24 (1986).

    Article  CAS  Google Scholar 

  28. K.T. Wan, S. Lathabais and B.R. Lawn, J. Europ. Ceram. Soc., 6, 4, 259–68 (1990).

    Article  CAS  Google Scholar 

  29. B.R. Lawn, Mater. Sci. and Eng., 13, 277–283 (1974).

    Article  Google Scholar 

  30. F. Wakai, H. Sakuramoto, S. Sakaguchi and Y. Matsuno, J Ceram. Soc. Japan, 898903 (1985).

    Google Scholar 

  31. J. Chevalier, C. Olagnon and G. Fantozzi, J. Am. Ceram. Soc.,in press, november (1999).

    Google Scholar 

  32. M. Boussuge, E. Inghels and J. Lamon, Rev. Int. Hautes. Temper. Refract., 19, 185–206 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ebrahimi, M.E., Chevalier, J., Saadaoui, M., Fantozzi, G. (2002). Effect of Grain Size on Crack Growth in Alumina. In: Bradt, R.C., Munz, D., Sakai, M., Shevchenko, V.Y., White, K. (eds) Fracture Mechanics of Ceramics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4019-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4019-6_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3370-6

  • Online ISBN: 978-1-4757-4019-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics