Skip to main content

Cyclic Fatigue of Zirconia Ceramics

  • Chapter
Fracture Mechanics of Ceramics
  • 557 Accesses

Abstract

Zirconia ceramics can achieve large increases in fracture toughness by controlling their phase transformation from tetragonal to monoclinic structure. The mechanical behavior under fluctuating loads is affected by such transformation toughening effects. Attention is given to the behavior of zirconia ceramics under cyclic loading, with special emphasis in clarifying the relative contribution of cyclic vs. static fatigue. The influence of transformation toughening in the fatigue-life limits is also addressed. Finally, the mechanisms underlying the influence of cyclic fatigue are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.G. Evans and E.R. Fuller, Crack propagation in ceramics materials under cyclic loading conditions, Met. Trans., 5, 27–33 (1974).

    Google Scholar 

  2. R.M. McMeeking and A.G. Evans, Mechanics of transformation toughening in brittle materials, J. Am. Ceram.Soc., 65, 242–246 (1982).

    Article  Google Scholar 

  3. R. Fernandez, D. Casellas, F.L. Cumbrera, F. Sanchez-Bajo, M. Anglada and L. Lianes, Phase assemblage effects on the fracture and fatigue characterization of magnesia-partially stabilized zirconia, Int. J. Refract. Met. Hard Mater., 16, 291–301 (1998).

    Article  CAS  Google Scholar 

  4. R. Fernandez, F. Meschke, G. De Portu, M. Anglada and L. Lianes, Fatigue and fracture characteristics of a fine-grained (Mg,Y)-PSZ zirconia ceramic, J. Eur. Ceram. Soc., 19, 1705–1715 (1999).

    Article  CAS  Google Scholar 

  5. R.H. Dauskardt and R.O. Ritchie, Cyclic fatigue of ceramics, in: Fatigue of Advanced Materials, R.O. Ritchie, R. H. Dauskardt and B.N. Cox,ed., 133–151 (1991).

    Google Scholar 

  6. R. Schmitt, T. Fett and D. Munz, Cyclic fatigue of zirconia, Fatigue Fract. Engng Mater. Struct., 19, 1411–1420 (1996).

    Article  CAS  Google Scholar 

  7. T. Fett and D. Munz, Subcritical crack growth of macrocracks in zirconia, ’Maier. Sci. Let., 10, 1103–1106 (1991).

    Article  CAS  Google Scholar 

  8. S.-Y. Liu and I.-W. Chen, Fatigue of yttria-stabilized zirconia: I, fatigue damage, fracture origins, and lifetime prediction, J. Am. Ceram. Soc., 74, 1197–1205 (1991).

    Article  CAS  Google Scholar 

  9. S.-Y. Liu and I.-W. Chen, Fatigue of yttria-stabilized zirconia: II, crack propagation, fatigue striations, and short-crack behavior, J. Am. Ceram. Soc., 74, 1206–1216 (1991).

    Article  CAS  Google Scholar 

  10. J. Alcalà and M. Anglada, Fatigue and static propagation in yttria-stabilized zirconia polycrystals: crack growth micromechanisms and precracking effects, J. Am. Ceram. Soc., 80, 2759–2772 (1997).

    Article  Google Scholar 

  11. J. Alcalá and M. Anglada, High-temperature crack growth in Y-TZP, Mat. Sci. Eng., A232, 103–109 (1997).

    Article  Google Scholar 

  12. D. Casellas, I. Ràfols, L. Lianes and M. Anglada, Fracture toughness of zirconiaalumina composites, Mt. J. Refract. Met. Hard Mat., 17, 11–20 (1998).

    Article  Google Scholar 

  13. D. Casellas, L. Lianes and M. Anglada, Fracture resistance of heat treated Y-TZP, in: Ceramics: getting into the 2000’s Part A, P.Vincenzini, ed., 13, 705–712 (1998).

    Google Scholar 

  14. R. H Dauskardt, D. B. Marshall and R. O. Ritchie, Cyclic fatigue crack propagation in magnesia partially stabilized zirconia ceramics, J. Am. Ceram. Soc.,73, 893–903 (1990).

    Google Scholar 

  15. T. Liu, Y.W. Mai, and M.V. Swain, Cyclic fatigue behavior of eutectoid aged Mg-PSZ ceramics with processing flaws, J.Eur. Ceram. Soc., 12, 221–226 (1992).

    Article  Google Scholar 

  16. R.O. Ritchie, Small crack growth and the fatigue of traditional and advanced materials, in: Fatigue ‘89, X.-R. and Z. —G. Wang, ed., 3–14 (1999).

    Google Scholar 

  17. A. Steffen, R. H. Dauskardt, and R. O. Ritchie, Cyclic fatigue life and crack-growth behavior of microstructurally small cracks in magnesia-partially-stabilized zirconia Ceramics, J. Am. Ceram. Soc., 74, 1256–68 (1991).

    Article  Google Scholar 

  18. D. Casellas to be presented in ICSMA, Asilomar, California (2000).

    Google Scholar 

  19. D.L. Davidson, J.B. Campbell, and L. Lankford, Fatigue crack growth through partially stabilized zirconia at ambient and at elevated temperatures, Acta Metall. Mater., 39, 1319–1330 (1991).

    Article  CAS  Google Scholar 

  20. I.W. Chen and S.-Y. Liu, Constitutive relations for mechanical fatigue in zirconia ceramics, in: Fatigue of Advanced Materials, R.O. Ritchie, R. H. Dauskardt and B.N. Cox, ed., Materials and Component Engineering Publications, Edgbaston, UK, 153–168 (1991).

    Google Scholar 

  21. M. Hoffman, Y. -W. Mai, S. Wakamaya, M. Kawahara, and T. Kishi, Crack-tip degradation processes observed during in situ cyclic fatigue of partially stabilized zirconia, J. Am. Ceram. Soc., 78, 2801–2810 (1995).

    Article  CAS  Google Scholar 

  22. C.V. Moller, J.C. Healy, and Y. -W Mai, In situ scanning electron microscope observations of fatigue in magnesia-partially-stabilized zirconia, Fatigue Fract. Engng Mater. Struct., 17, 285–296 (1994).

    Google Scholar 

  23. M. Hoffman, Y. -W. Mai, R.H. Dauskardt, J. Ager and R.O. Ritchie, Grain size effects on cyclic fatigue and crack growth resistance behavior in magnesia-partiallystabilized zirconia, J. Mater. Sci., 30, 3291–3299 (1995).

    Article  CAS  Google Scholar 

  24. S. Lathabai, J. Rodel and B.R. Lawn, Cyclic fatigue from frictional degradation of bridging grains in alumina, J. Am. Ceram. Soc., 74, 1340–48 (1991).

    Article  CAS  Google Scholar 

  25. S.-Y. Liu and I.-W. Chen, Fatigue deformation mechanism of zirconia ceramics, 75, 1191–204 (1992).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anglada, M., Alcalá, J., Fernández, R., Llanes, L., Casellas, D. (2002). Cyclic Fatigue of Zirconia Ceramics. In: Bradt, R.C., Munz, D., Sakai, M., Shevchenko, V.Y., White, K. (eds) Fracture Mechanics of Ceramics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4019-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4019-6_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3370-6

  • Online ISBN: 978-1-4757-4019-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics