Person-by-item predictors

  • Michel Meulders
  • Yiyu Xie
Part of the Statistics for Social Science and Public Policy book series (SSBS)


In this chapter we consider the inclusion of person-by-item predictors into the model. Unlike person predictors or item predictors, person-by-item predictors vary both within and between persons. The inclusion of person-by-item predictors besides person predictors or item predictors is relevant for modeling various phenomena such as differential item functioning (DIF) and local item dependencies (LID) (see Zwinderman, 1997). To describe models with person-by-item predictors we will distinguish between static and dynamic interaction models. We concentrate here on models for DIF and LID, but the interaction concept is of course more general.


Differential Item Functioning Item Response Item Response Theory Partial Credit Model Item Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, B.C. & Press, S.J. (1989). Compatible conditional distributions. Journal of the American Statistical Association, 84, 152–156.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Diggle, P.J., Heagerty, P., Liang, K. & Zeger, S.L. (2002). Analysis of Longitudinal Data (2nd ed.). New York: Oxford University Press.Google Scholar
  3. Dorans, N.J. & Holland, P.W. (1993). DIF detection and description: Mantel-Haenszel and standardization. In P.W. Holland & W. Howard (Eds), Differential Item Functioning (pp. 35–66). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  4. Dorans, N.J. & Kulick, E. (1986). Demonstrating the utility of the standardization approach to assessing unexpected differential item performance on the scholastic aptitude test. Journal of Educational Measurement, 23, 355–368.CrossRefGoogle Scholar
  5. Engelhard, G. (1992). The measurement of writing ability with a many-faceted Rasch model. Applied Measurement in Education, 5, 171–191.CrossRefGoogle Scholar
  6. Fahrmeir, L. & Tutz, G. (2001). Multivariate Statistical Modeling Based on Generalized Linear Models (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  7. Gelman, A. & Speed, T.P. (1993). Characterizing a joint probability distribution by conditionals. Journal of the Royal Statistical Society. Series B, 55, 185–188.MathSciNetzbMATHGoogle Scholar
  8. Holland, P.W. & Thayer, D.T. (1988). Differential item functioning and the Mantel-Haenszel procedure. In H. Wainer & H.I. Braun (Eds), Test Validity (pp. 129–145). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  9. Holland, P.W. & Wainer, H. (1993). Differential Item Functioning. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  10. Hoskens, M. & De Boeck, P. (1995). Componential IRT models for polytomous items. Journal of Educational Measurement, 32, 364–384.CrossRefGoogle Scholar
  11. Hoskens, M. & De Boeck, P. (1997). A parametric model for local dependence among test items. Psychological Methods, 2, 261–277.CrossRefGoogle Scholar
  12. Hunt, L.A. & Jorgensen, M.A. (1999). Mixture model clustering: A brief introduction to the MULTIMIX program. Australian and New Zealand Journal of Statistics, 41, 153–171.zbMATHGoogle Scholar
  13. Ip, E.H., Wang, J.W., De Boeck, P. & Meulders, M. (2003). Locally dependent latent trait models for polytomous responses. Psychometrika. Manuscript accepted for publication.Google Scholar
  14. Jannarone, R.J. (1986). Conjunctive item response theory kernels. Psychometrika, 51, 357–373.zbMATHCrossRefGoogle Scholar
  15. Kelderman, H. (1984). Loglinear Rasch model tests. Psychometrika, 49, 223–245.zbMATHCrossRefGoogle Scholar
  16. Kelderman, H. (1989). Item bias detection using loglinear IRT. Psychometrika, 54, 681–697.MathSciNetCrossRefGoogle Scholar
  17. Klauer, K.C. & Sydow, H. (2001). Dynamic IRT models. In A. Boomsma, M.A.J. van Duijn & T.A.B. Snijders (Eds), Essays on Item Response Theory (pp. 69–87). New York: Springer.CrossRefGoogle Scholar
  18. Li, H. & Stout, W. (1996). A new procedure for detection of crossing DIF. Psychometrika, 61, 647–677.zbMATHCrossRefGoogle Scholar
  19. Lord, F.M. (1980). Applications of Item Response Theory to Practical Testing Problems. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  20. Mellenbergh, G.J. (1982). Contingency table models for assessing item bias. Journal of Educational Statistics, 7, 105–118.CrossRefGoogle Scholar
  21. Millsap, R.E. & Everson, H.T. (1993). Methodology review: Statistical approaches for assessing measurement bias. Applied Psychological Measurement, 17, 297–334.CrossRefGoogle Scholar
  22. Moore, S.M. (1996). Estimating differential item functioning in the polytomous case with the RCML model. In G. Engelhard & M. Wilson (Eds), Objective Measurement: Theory into Practice (Vol.3) (pp. 219–240). Norwoord, NJ: Ablex.Google Scholar
  23. Muraki, E. (1999). Stepwise analysis of differential item functioning based on multiple-group partial credit model. Journal of Educational Measurement, 36, 217–232.CrossRefGoogle Scholar
  24. Raju, N.S. (1988). The area between two item characteristic curves. Psychometrika, 53, 495–502.MathSciNetzbMATHCrossRefGoogle Scholar
  25. Rosenbaum, P.R. (1988). Item bundles. Psychometrika, 53, 349–359.MathSciNetzbMATHCrossRefGoogle Scholar
  26. Scheuneman, J.D. (1979). A method of assessing bias in test items. Journal of Educational Measurement, 16, 143–152.CrossRefGoogle Scholar
  27. Shealy, R. & Stout, W. (1993a). An item response theory model for test bias and differential item functioning. In P.W. Holland & W. Howard (Eds), Differential Item Functioning (pp. 197–239). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  28. Shealy, R. & Stout, W. (1993b). A model-based standardization approach that separates true bias/DIF from group ability differences and detects test bias/DTF as well as item bias/DIF. Psychometrika, 58, 159–194.zbMATHCrossRefGoogle Scholar
  29. Swaminathan, H. & Rogers, H.J. (1990). Detecting differential item functioning using logistic regression procedures. Journal of Educational Measurement, 27, 361–370.CrossRefGoogle Scholar
  30. Thissen, D., Steinberg, L. & Wainer, H. (1988). Use of item-response theory in the study of group differences in trace lines. In H. Wainer & H.I. Braun (Eds), Test Validity (pp. 147–169). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  31. Verguts, T. & De Boeck, P. (2000). A Rasch model for learning while solving an intelligence test. Applied Psychological Measurement, 24, 151–162.CrossRefGoogle Scholar
  32. Verhelst, N.D. & Glas, C.A.W. (1993). A dynamic generalization of the Rasch model. Psychometrika, 58, 395–415.zbMATHCrossRefGoogle Scholar
  33. Verhelst, N.D. & Glas, C.A.W. (1995). Dynamic generalizations of the Rasch model. In G.H. Fischer & I.W. Molenaar (Eds), Rasch Models: Foundations, Recent Developments, and Applications (pp. 181–201). New York: Springer.Google Scholar
  34. Wainer, H., Sireci, S.G., & Thissen, D. (1991). Differential test let functioning: Definitions and detection. Journal of Educational Measurement, 28, 197–219.CrossRefGoogle Scholar
  35. Wainer, H. & Kiely, G. (1987). Item clusters and computerized adaptive testing: A case for testlets. Journal of Educational Measurement, 24, 185–201.CrossRefGoogle Scholar
  36. Wilson, M. & Adams, R.A. (1995). Rasch models for item bundles. Psychometrika, 60, 181–198.zbMATHCrossRefGoogle Scholar
  37. Zimowski, F., Muraki, E., Mislevy, R.J. & Bock, R.D. (1994). BIMAIN 2: Multiple group IRT analysis and test maintenance for binary items. Chicago: Scientific Software International.Google Scholar
  38. Zwinderman, A.H. (1997). Response models with manifest predictors. In W.J. van der Linden & R.K. Hambleton (Eds), Handbook of Modern Item Response Theory (pp. 245–256). New York: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Michel Meulders
  • Yiyu Xie

There are no affiliations available

Personalised recommendations