Estimation and software

  • Francis Tuerlinckx
  • Frank Rijmen
  • Geert Molenberghs
  • Geert Verbeke
  • Derek Briggs
  • Wim Van den Noortgate
  • Michel Meulders
  • Paul De Boeck
Part of the Statistics for Social Science and Public Policy book series (SSBS)

Abstract

The aim of this last chapter is threefold. First, we want to give the reader further insights into the estimation methods for the models presented in this volume. Second, we want to discuss the available software for the models presented in this volume. We will not sketch all possibilities of the software, but only those directly relevant to item response modeling as seen in this volume. Third, we want to illustrate the use of various programs for the estimation of a basic model, the Rasch model, for the verbal aggression data.

Keywords

Item Parameter Item Response Model Person Parameter Conditional Maximum Likelihood NLMIXED Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., & Stegun, I. (1974). Handbook of Mathematical Functions. New York: Dover Publications.Google Scholar
  2. Adams, R.J., Wilson, M.R., & Wang, W. C. (1997). The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 21, 1–23.CrossRefGoogle Scholar
  3. Andersen, E.B. (1970). Asymptotic properties of conditional maximum-likelihood estimators. Journal of the Royal Statistical Society, Series B, 32, 283–301.MATHGoogle Scholar
  4. Andersen, E.B. (1980). Discrete Statistical Models with Social Science Applications. Amsterdam: North-Holland.MATHGoogle Scholar
  5. Bock, R.D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: An application of the EM algorithm. Psychometrika, 46, 443–459.MathSciNetCrossRefGoogle Scholar
  6. Breslow, N.E. and Clayton, D.G. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88, 9–25.MATHGoogle Scholar
  7. Breslow, N.E., & Lin, X. (1995). Bias correction in generalised linear mixed models with a single component of dispersion. Biometrika, 82, 81–91.MathSciNetMATHCrossRefGoogle Scholar
  8. Browne, W.J., & Draper, D. (2003). A comparison of Bayesian and likelihood-based methods for fitting multilevel models. Manuscript submitted for publication.Google Scholar
  9. Bryk, A.S., & Raudenbush, S.W. (1992). Hierarchical Linear Models: Applications and Data Analysis Methods. London: Sage.Google Scholar
  10. Bunday, B.D. (1984). Basic Optimisation Methods. London: Edward Arnold.Google Scholar
  11. Cowles, K., & Carlin, B. P. (1996). Markov chain Monte Carlo convergence diagnostics: A comparative review. Journal of the American Statistical Association, 91, 883–904.MathSciNetMATHCrossRefGoogle Scholar
  12. Cytel Software Corporation (2000). EGRET for Windows, User Manual.Google Scholar
  13. Dempster, A.P., Laird, N.M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39, 1–38.MathSciNetMATHGoogle Scholar
  14. Everitt, B.S. (1987). Optimisation Methods and their Applications in Statistics. London: Chapman & Hall.CrossRefGoogle Scholar
  15. Gelfand, A. E., & Smith, A. F. M. (1990). Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398–409.MathSciNetMATHCrossRefGoogle Scholar
  16. Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004). Bayesian Data Analysis. London: Chapman and Hall.MATHGoogle Scholar
  17. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.MATHCrossRefGoogle Scholar
  18. Gill, P.E., Murray, W., & Wright, M.H. (1981). Practical Optimization. New York: Academic Press.MATHGoogle Scholar
  19. Goldstein, H. (1989). Restricted unbiased iterative generalized least squares estimation. Biometrika, 76, 622–623.MathSciNetMATHCrossRefGoogle Scholar
  20. Goldstein, H. (1991). Nonlinear multilevel models, with an application to discrete response data. Biometrika, 78, 45–51.MathSciNetCrossRefGoogle Scholar
  21. Goldstein, H. (2003). Multilevel Statistical Models (3rd ed.). London: Arnold.MATHGoogle Scholar
  22. Goldstein, H. & Rasbash, J. (1996). Improved approximations for multilevel models with binary responses. Journal of the Royal Statistical Society A, 159, 505–513.MathSciNetMATHCrossRefGoogle Scholar
  23. Goldstein, H., Rasbash, J., Plewis, L, Draper, D., Browne, W., Yang, M., Woodhouse, G., & Healy, M. (1998). User’s Guide to MLwiN. Multilevel Models Project, University of London.Google Scholar
  24. Hedeker, D. (1999). MIXNO: A computer program for mixed-effects nominal logistic regression. Computer software and manual.Google Scholar
  25. Hedeker, D., & Gibbons, R.D. (1994). A random-effects ordinal regression model for multilevel analysis. Biometrics, 50, 933–944.MATHCrossRefGoogle Scholar
  26. Hedeker, D., & Gibbons, R.D. (1996). MIXOR: A computer program for mixed-effects ordinal regression analysis. Computer Methods and Programs in Biomedicine, 49, 157–176.CrossRefGoogle Scholar
  27. Heinen, T. (1996). Latent Class and Discrete Latent Trait Models: Similarities and Differences. Thousand Oaks, CA: Sage.Google Scholar
  28. Jőreskog, K.G. & Sőrbom, D. (2003). LISREL 8.5 for Windows. Lincolnwood, IL: Scientific Software.Google Scholar
  29. Laird, N.M. (1978). Nonparametric maximum likelihood estimation of a mixing distribution. Journal of the American Statistical Association, 73, 805–811.MathSciNetMATHCrossRefGoogle Scholar
  30. Lange, K. (1999). Numerical Methods for Statisticians. New York: Wiley.Google Scholar
  31. Lesaffre, E., & Spiessens, B. (2001). On the effect of the number of quadrature points in a logistic random-effects model: an example. Applied Statistics, 50, 325–335.MathSciNetMATHGoogle Scholar
  32. Lin, X. and Breslow, N.E. (1996). Bias correction in generalized linear mixed models with multiple components of dispersion. Journal of the American Statistical Association, 91, 1007–1016.MathSciNetMATHCrossRefGoogle Scholar
  33. Littell, R., Milliken, G., Stroup, W., & Wolfinger, R. (1996). SAS System for Mixed Models. Cary, NC: SAS Institute Inc.Google Scholar
  34. Liu, Q., & Pierce, D.A. (1994). A note on Gauss-Hermite quadrature. Biometrika, 81, 624–624.MathSciNetMATHGoogle Scholar
  35. Longford, N.T. (1993). Random Coefficients Models. Oxford: Clarendon Press.Google Scholar
  36. McCulloch, C.E., & Searle, S.R. (2001). Generalized, Linear, and Mixed Models. New York: Wiley.MATHGoogle Scholar
  37. McLachlan, G.J. & Krishnan, T. (1997). The EM Algorithm and Extensions. New York: Wiley.MATHGoogle Scholar
  38. Metropolis, N. & Ulam, S. (1949) The Monte Carlo Method. Journal of the American Statistical Association, 44, 335–341.MathSciNetMATHCrossRefGoogle Scholar
  39. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. & Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087–1092.CrossRefGoogle Scholar
  40. Molenaar, I. (1995). Estimation of item parameters. In G.H. Fischer & I. Molenaar (Eds), Rasch Models. Foundations, Recent Developments and Applications (pp. 39–57). New York: Springer.Google Scholar
  41. Muthén, B., & Muthén, L. (2003). Mplus version 2.14- Los Angeles, CA: Muthén & Muthén.Google Scholar
  42. Naylor, J.C., & Smith, A.F.M. (1982). Applications of a method for the efficient computation of posterior distributions. Applied Statistics, 31, 214–225.MathSciNetMATHCrossRefGoogle Scholar
  43. Neyman, J., & Scott, E.L. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16, 1–32.MathSciNetCrossRefGoogle Scholar
  44. Pinheiro, P.C. and Bates, D.M. (1995). Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics, 4, 12–35.Google Scholar
  45. Pinheiro, P.C. and Bates D.M. (2000). Mixed-Effects Models in S and S-PLUS. New-York: Springer.MATHCrossRefGoogle Scholar
  46. Rabe-Hesketh, S., Pickles, A., & Skrondal, A. (2001). GLLAMM Manual. Technical Report 2001/01. Department of Biostatistics and Computing, Institute of Psychiatry, King’s College, University of London.Google Scholar
  47. Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2002). Reliable estimation of generalized linear mixed models using adaptive quadrature. The Stata Journal, 2, 1–21.Google Scholar
  48. Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (in press). Generalized multilevel structural equation modeling. Psychometrika. Google Scholar
  49. Raudenbush, S.W., Yang, M.-L., & Yosef, M. (2000). Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation. Journal of Computational and Graphical Statistics, 9, 141–157.MathSciNetGoogle Scholar
  50. Raudenbush, S.W., Bryk, A.S., Cheong, Y., & Longdon, R.T. (2000). HLM5: Hierarchical Linear and Nonlinear Modeling. Chicago: Scientific Software International.Google Scholar
  51. Raudenbush, S.W., & Bryk, A.S. (2002). Hierarchical Linear Models. Applications and Data Analysis Methods. Newbury Park, CA: Sage.Google Scholar
  52. Rodriguez, G. and Goldman, N. (1995). An assessment of estimation procedures for multilevel models with binary responses. Journal of the Royal Statistical Society A, 158, 73–89.CrossRefGoogle Scholar
  53. SAS Institute (1999). SAS Online Doc (Version 8) (software manual on CD-Rom). Cary, NC: SAS Institute Inc.Google Scholar
  54. Schall, R. (1991). Estimation in generalised linear models with random effects. Biometrika, 78, 719–727.MATHCrossRefGoogle Scholar
  55. Shun, Z., & McCullagh, P. (1995). Laplace approximation of high dimensional integrals. Journal of the Royal Statistical Society B, 57, 749–760.MathSciNetMATHGoogle Scholar
  56. Skrondal, A., & Rabe-Hesketh, S. (2003). Multilevel logistic regression for polytomous data and rankings. Psychometrika, 68, 267–287.MathSciNetCrossRefGoogle Scholar
  57. Spiegelhalter, D., Thomas, A., Best, N. & Lunn, D. (2003). BUGS: Bayesian inference using Gibbs sampling. MRC Biostatistics Unit, Cambridge, England, http://www.mrc-bsu.cam.ac.uk/bugs/ Google Scholar
  58. Stiratelli, R., Laird, N., and Ware, J.H. (1984). Random-effects model for serial observations with binary response. Biometrics, 40, 961–971.CrossRefGoogle Scholar
  59. Tanner, M.A. (1996). Tools for Statistical Inference (3rd ed.). New York: Springer.MATHCrossRefGoogle Scholar
  60. Thissen, D., Chen, W.-H, & Bock, R.D. (2002). MULTILOG7. Lincolnwood, IL: Scientific Software.Google Scholar
  61. Tierny, L., & Kadane, J.B. (1986). Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association, 81, 82–86.MathSciNetCrossRefGoogle Scholar
  62. Verhelst, N.D., & Glas, C.A.W., & Verstralen, H.H.F.M. (1994). One Parameter Logistic Model (computer program and manual). Arnhem, The Netherlands: CITO.Google Scholar
  63. Wolfinger, R.D., & Lin, X. (1997). Two Taylor-series approximation methods for nonlinear mixed models. Computational Statistics and Data Analysis, 25, 465–490.MATHCrossRefGoogle Scholar
  64. Wolfinger, R., & O’Connell, M. (1993). Generalized linear mixed models: A pseudo-likelihood approach. Journal of Statistical Computing and Simulation, 48, 233–243.MATHCrossRefGoogle Scholar
  65. Woodhouse, G. (1991). Multilevel item response models. In R. Prosser, J. Rasbash, & H. Goldstein (Eds.), Data Analysis with MLS (pp. 19–43). London: Institute of Education.Google Scholar
  66. Wu, M.L., Adams, R.J., & Wilson, M. (1998). ACER Conquest. Hawthorn, Australia: ACER Press.Google Scholar
  67. Zeger, S.L. and Karim, M.R. (1991). Generalised linear models with random effects: a Gibbs sampling approach; Journal of the American Statistical Association, 86, 79–102.MathSciNetCrossRefGoogle Scholar
  68. Zimowski, M., Muraki, E., Mislevy, R.J., & Bock, R.D. (1995). BILOG-MG: Multiple-Group Item Analysis and Test Scoring. Chicago, IL: Scientific Software.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Francis Tuerlinckx
  • Frank Rijmen
  • Geert Molenberghs
  • Geert Verbeke
  • Derek Briggs
  • Wim Van den Noortgate
  • Michel Meulders
  • Paul De Boeck

There are no affiliations available

Personalised recommendations