Skip to main content

Abstract

In all models discussed thus far in this volume, it has been assumed that the random person weights θ p follow a normal distribution with mean 0 and covariance matrix Σ:

$${\theta _p} \sim N\left( {0,\sum } \right).$$

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Böhning, D. (1999). Computer-Assisted Analysis of Mixtures and Applications : Meta-analysis, Disease Mapping and Others. London: Chapman & Hall.

    Google Scholar 

  • Bolt, D.M., Cohen, A.S., & Wollack, J.A. (2002). Item parameter estimation under conditions of test speediness: Application of a mixture Rasch model with ordinal constraints. Journal of Educational Measurement, 39, 331–348.

    Article  Google Scholar 

  • Croon, M. (1990). Latent class analysis with ordered latent classes. British Journal of Mathematical and Statistical Psychology, 43, 171–192.

    Article  Google Scholar 

  • Dayton, C.M. & Macready, G.B. (1976). A probabilistic model for validation of behavioral hierarchies. Psychometrika, 41, 189–204.

    Article  MATH  Google Scholar 

  • Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, Series B, 39, 1–38.

    MathSciNet  MATH  Google Scholar 

  • Draney, K. (1996). The polytomous saltus model: A mixture model approach to the diagnosis of developmental differences. Unpublished Ph.D. thesis, UC, Berkeley.

    Google Scholar 

  • Draney, K., & Wilson, M. (1997). PC-Saltus [Computer program]. Berkeley Evaluation and Assessment Center Research Report, UC Berkeley.

    Google Scholar 

  • Fischer, G.H. (1983). Logistic latent trait models with linear constraints. Psychometrika, 48, 3–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Formann, A.K. (1992). Linear logistic latent class analysis for polytomous data. Journal of the American Statistical Association, 87, 476–486.

    Article  Google Scholar 

  • Gitomer, D.H. & Yamamoto, K. (1991). Performance modeling that integrates latent trait and class theory. Journal of Educational Measurement, 28, 173–189.

    Article  Google Scholar 

  • Goodman, L.A. (1974). The analysis of systems of qualitative variables when some of variables are unobservable; Part I- A modified latent structure approach. American Journal of Sociology, 79, 1179–1259.

    Article  Google Scholar 

  • Haberman, S.J. (1979). Analysis of Qualitative Data. Vol.2: New Developments. New York: Academic Press.

    Google Scholar 

  • Haertel, E. (1990). Continuous and discrete latent structure models for item response data. Psychometrika, 55, 477–494.

    Article  Google Scholar 

  • Heinen, A.G.J. (1993). Discrete Latent Variable Models. Tilburg: Tilburg University Press.

    Google Scholar 

  • Langeheine, R. (1988). New developments in latent class theory. In R. Langeheine & J. Rost (Eds), Latent Trait and Latent Class Models (pp. 77–108). New York: Plenum Press.

    Google Scholar 

  • Lazarsfeld, P.F. & Henry, N.W. (1968). Latent Structure Analysis, Boston: Houghton-Mifflin.

    MATH  Google Scholar 

  • Louis, T.A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B, 44, 226–233.

    MathSciNet  MATH  Google Scholar 

  • McLachlan, G.J. & Krishnan, T. (1997). The EM Algorithm and Extensions. New York: Wiley.

    MATH  Google Scholar 

  • Meulders, M., De Boeck, P., Kuppens, P., & Van Mechelen, I. (2002). Constrained latent class analysis of three-way three-mode data. Journal of Classification, 19, 277–302.

    Article  MathSciNet  MATH  Google Scholar 

  • Mislevy, R.J. (1984). Estimating latent distributions. Psychometrika, 49, 359–382.

    Article  MATH  Google Scholar 

  • Mislevy, R.J. & Verhelst, N. (1990). Modeling item responses when different persons employ different solution strategies. Psychometrika, 55, 195–215.

    Article  Google Scholar 

  • Mislevy, R.J. & Wilson, M. (1996). Marginal maximum likelihood estimation for a psychometric model of discontinuous development. Psychometrika, 61, 41–71.

    Article  MATH  Google Scholar 

  • Reise, S.P., & Gomel, J.N. (1995). Modeling qualitative variation within latent trait dimensions: Application of mixed measurement of personality assessment. Multivariate Behavioral Research, 30, 341–358.

    Article  Google Scholar 

  • Rijmen, F. & De Boeck, P. (2003). A latent class model for individual differences in the interpretation of conditonals. Psychological Research, 67, 219–231.

    Article  Google Scholar 

  • Rost, J. (1988). Test theory with qualitative and quantitative latent variables. In R. Langeheine & J. Rost (Eds), Latent Trait and Latent Class Models (pp. 147–171). New York: Plenum Press.

    Google Scholar 

  • Rost, J. (1990). Rasch models in latent class analysis: An integration of two approaches to item analysis. Applied Psychological Measurement, 14, 271–282.

    Article  Google Scholar 

  • Spiessens, B., Verbeke, G., & Komárek, A. (2004). A SAS macro for the classification of longitudinal profiles using mixtures of normal distributions in nonlinear and generalised linear mixed models. Manuscript submitted for publication.

    Google Scholar 

  • Vermunt, J.K. (1997). 1EM. A general program for the analysis of categorical data. Tilburg University, The Netherlands.

    Google Scholar 

  • Vermunt, J.K. (1997). Loglinear Models of Event Histories. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Vermunt, J.K., & Magdison, J. (2000). Latent-GOLD. Belmont, MS: Statistical Innovations.

    Google Scholar 

  • von Davier, M. (2001). WINMIRA 2001. Latent Class Analysis, Dichotomous and Polytomous Rasch Models. St. Paul, MN: Assessment Systems.

    Google Scholar 

  • Waller, N.G., & Meehl, P. (1998). Multivariate Taxomatric Procedures. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Wilson, M. (1984). A psychometric model of hierarchical development. Unpublished Ph.D. thesis, University of Chicago.

    Google Scholar 

  • Wilson, M. (1989). Saltus: A psychometric model of discontinuity in cognitive development. Psychological Bulletin, 105, 276–289.

    Article  Google Scholar 

  • Yen, W. (1985). Increasing item complexity: A possible cause of scale shrinkage for unidimensional item response theory. Psychometrika, 50, 399–410.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fieuws, S., Spiessens, B., Draney, K. (2004). Mixture Models. In: De Boeck, P., Wilson, M. (eds) Explanatory Item Response Models. Statistics for Social Science and Public Policy. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3990-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3990-9_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2323-3

  • Online ISBN: 978-1-4757-3990-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics