Skip to main content

Two-Parameter Bifurcations of Fixed Points in Discrete-Time Dynamical Systems

  • Chapter
Elements of Applied Bifurcation Theory

Part of the book series: Applied Mathematical Sciences ((AMS,volume 112))

  • 3836 Accesses

Abstract

This chapter is devoted to the study of generic bifurcations of fixed points of two-parameter maps. First we derive a list of such bifurcations. As for the final two bifurcations in the previous chapter, the description of the majority of these bifurcations is incomplete in principle. For all but two cases, only approximate normal forms can be constructed. Some of these normal forms will be presented in terms of associated planar continuous-time systems whose evolution operator φ 1 approximates the map in question (or an appropriate iterate of the map). We present bifurcation diagrams of the approximate normal forms in minimal dimensions and discuss their relationships with the original maps. In general n-dimensional situation, these results should be applied to a map restricted to the center manifold. We give explicit computational formulas for the critical normal form coefficients of the restricted map in most of the codim 2 cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes

  • Arnol’d, V.I., Afraimovich, V.S., Il’yashenko, Yu.S. and Shil’nikov, L.P. (1994), Bi-furcation theory, in V.I. Arnol’d, ed., `Dynamical Systems V. Encyclopaedia of Mathematical Sciences’, Springer-Verlag, New York.

    Google Scholar 

  • Holmes, P. and Whitley, D. (1984), `Bifurcations of one-and two-dimensional maps’, Philos. Trans. Roy. Soc. London, Ser. A 311, 43–102.

    MathSciNet  MATH  Google Scholar 

  • Peckham, B. and Kevrekidis, I. (1991), `Period doubling with higher-order degeneracies’, SIAM J. Math. Anal. 22, 1552–1574.

    Article  MathSciNet  MATH  Google Scholar 

  • Arrowsmith, D. and Place, C. (1990), An Introduction to Dynamical Systems,Cambridge University Press, Cambridge.

    Google Scholar 

  • Melnikov, V.K. (1962), Qualitative description of resonance phenomena in nonlinear systems, P-1013, OIJaF, Dubna. In Russian.

    Google Scholar 

  • Sacker, R. (1964), On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations, Report IMM-NYU 333, New York University.

    Google Scholar 

  • Arnol’d, V.I. (1983), Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York.

    Book  Google Scholar 

  • Arnol’d, V.I. (1977), `Loss of stability of self-induced oscillations near resonance, and versal deformations of equivariant vector fields’, Functional Anal. Appl. 11, 85–92.

    Article  MATH  Google Scholar 

  • Takens, F. (1974a), `Forced oscillations and bifurcations’, Comm. Math. Inst., Rijkuniversiteit Utrecht 2, 1–111. Reprinted in Global Analysis of Dynamical Systems, Instute of Physics, Bristol, 2001, pp. 1–61.

    Google Scholar 

  • Arrowsmith, D. and Place, C. (1990), An Introduction to Dynamical Systems,Cambridge University Press, Cambridge.

    Google Scholar 

  • Arnol’d, V.I., Afraimovich, V.S., Il’yashenko, Yu.S. and Shil’nikov, L.P. (1994), Bi-furcation theory, in V.I. Arnol’d, ed., `Dynamical Systems V. Encyclopaedia of Mathematical Sciences’, Springer-Verlag, New York.

    Google Scholar 

  • Chow, S.-N. and Lin, X.-B. (1990), `Bifurcation of a homoclinic orbit with a saddle-node equilibrium’, Differential Integral Equations 3, 435–466.

    MathSciNet  MATH  Google Scholar 

  • Takens, F. (1973), `Unfoldings of certain singularities of vector fields: generalized Hopf bifurcations’, J. Differential Equations. 14, 476–493.

    Article  MathSciNet  MATH  Google Scholar 

  • Holmes, P. and Whitley, D. (1984), `Bifurcations of one-and two-dimensional maps’, Philos. Trans. Roy. Soc. London, Ser. A 311, 43–102.

    MathSciNet  MATH  Google Scholar 

  • Horozov, E. (1979), Versai deformations of equivariant vector fields for the cases of symmetry of order 2 and 3, in `Proceedings of Petrovskii Seminar, Vol. 5’, Moscow State University, Moscow, pp. 163–192. In Russian.

    Google Scholar 

  • Cheng, C.-Q. (1990), ‘Hopf bifurcations in nonautonomous systems at points of resonance’, Sci. China Ser. A 33, 206–219.

    MathSciNet  MATH  Google Scholar 

  • Krauskopf, B. (1997), `Bifurcations at co in a model for 1:4 resonance’, Ergodic Theory Dynamical Systems 17, 899–931.

    Article  MathSciNet  MATH  Google Scholar 

  • Neimark, Ju.I. (1972), The Method of Point Transformations in the Theory of Nonlinear Oscillations,Nauka, Moscow. In Russian.

    Google Scholar 

  • Moser, J. (1973), Stable and Random Motions in Dynamical Systems, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Gheiner, J. (1994), ‘Codimension-two reflection and nonhyperbolic invariant lines’, Nonlinearity 7, 109–184.

    Article  MathSciNet  MATH  Google Scholar 

  • Broer, H., Roussarie, R. and Simó, C. (1993), On the Bogdanov-Takens bifurcation for planar diffeomorphisms, in `International Conference on Differential Equations, Vol. 1, 2 (Barcelona, 1991)’, World Scientific, River Edge, NJ, pp. 81–92.

    Google Scholar 

  • Broer, H., Roussarie, R. and Simó, C. (1996), `Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphisms’, Ergodic Theory Dynamical Systems 16, 1147–1172.

    Article  MATH  Google Scholar 

  • Arrowsmith, D., Cartwright, J., Lansbury, A. and Place, C. (1993), `The Bogdanov map: Bifurcations, mode locking, and chaos in a dissipative system’, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 3, 803–842.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghezzi, L. and Kuznetsov, Yu.A. (1994), `Strong resonances and chaos in a stock market model’, Internat. J. Systems Sci. 11, 1941–1955.

    Article  MathSciNet  Google Scholar 

  • Taylor, M. and Kevrekidis, I. (1991), `Some common dynamic features of coupled reacting systems’, Physica D 51, 274–292.

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor, M. and Kevrekidis, I. (1993), `Couple, double, toil and trouble: a computer assisted study of two coupled CSTRs’, Chem. Engng. Sci. 48 , 1–86.

    Google Scholar 

  • Kuznetsov, Yu.A., Muratori, S. and Rinaldi, S. (1992), `Bifurcations and chaos in a periodic predator-prey model’, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 2, 117–128.

    Article  MathSciNet  MATH  Google Scholar 

  • Pavlou, S. and Kevrekidis, I. (1992), `Microbial predation in a periodically operated chemostat: A global study of the interaction between natural and externally imposed frequencies’, Math. Biosci. 108, 1–55.

    Article  MathSciNet  MATH  Google Scholar 

  • Bajaj, A. (1986), `Resonant parametric perturbations of the Hopf bifurcation’, J. Math. Anal. Appl. 115, 214–224.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov, Yu.A., Muratori, S. and Rinaldi, S. (1995), `Homoclinic bifurcations in slow-fast second order systems’, Nonlinear Anal. 25,747–762.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuznetsov, Y.A. (2004). Two-Parameter Bifurcations of Fixed Points in Discrete-Time Dynamical Systems. In: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences, vol 112. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3978-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3978-7_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1951-9

  • Online ISBN: 978-1-4757-3978-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics