Skip to main content

Bifurcations of Orbits Homoclinic and Heteroclinic to Hyperbolic Equilibria

  • Chapter
Elements of Applied Bifurcation Theory

Part of the book series: Applied Mathematical Sciences ((AMS,volume 112))

Abstract

In this chapter we will study global bifurcations corresponding to the appearance of homoclinic or heteroclinic orbits connecting hyperbolic equilibria in continuous-time dynamical systems. First we consider in detail two- and three-dimensional cases where geometrical intuition can be fully exploited. Then we show how to reduce generic n-dimensional cases to the considered ones plus a four-dimensional case treated in Appendix A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes

  • Andronov, A.A. and Leontovich, E.A. (1939), `Some cases of the dependence of the limit cycles upon parameters’, Uchen. Zap. Gork. Univ. 6, 3–24.

    Google Scholar 

  • Andronov, A.A., Leontovich, E.A., Gordon, I.I. and Maier, A.G. (1973), Theory of Bifurcations of Dynamical Systems on a Plane, Israel Program for Scientific Translations, Jerusalem.

    Google Scholar 

  • Chenciner, A. (1988), `Bifurcations de points fixes elliptiques. III. Orbites périodiques de “petites” périodes et élimination résonnante des couples de courbes invariantes’, Inst. Hautes Études Sci. Publ. Math. 66, 5–91.

    MathSciNet  MATH  Google Scholar 

  • Hille, E. and Phillips, R. (1957), Functional Analysis and Semigroups, American Mathematical Society, Providence, RI.

    Google Scholar 

  • Moser, J. (1973), Stable and Random Motions in Dynamical Systems, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Rössler, O. (1979), Continuous chaos four prototype equations, in O. Gurel and O. Rossler, eds, `Bifurcation Theory and Applications in Scientific Disciplines (Papers, Conf., New York, 1977)’, New York Acad. Sci., pp. 376–392.

    Google Scholar 

  • Vanderbauwhede, A. (1989), `Centre manifolds, normal forms and elementary bifurcations’, Dynamics Reported 2, 89–169.

    Article  MathSciNet  Google Scholar 

  • Hartman, P. (1963), `On the local linearization of differential equations’, Proc. Amer. Math. Soc. 14, 568–573.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov, Yu.A. (1983), One-dimensional invariant manifolds of saddles in ordinary differential equations depending upon parameters, FORTRAN Software Series, Vol. 8, Research Computing Centre, USSR Academy of Sciences, Pushchino, Moscow Region. In Russian.

    Google Scholar 

  • Kuznetsov, Yu.A. (1990), Computation of invariant manifold bifurcations, in D. Roose, B. De Dier and A. Spence, eds, `Continuation and Bifurcations: Numerical Techniques and Applications (Leuven, 1989)’, Vol. 313 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Kluwer Acad. Publ., Dordrecht, pp. 183–195.

    Google Scholar 

  • Lanford, O. (1984), `A shorter proof of the existence of the Feigenbaum fixed point’, Comm. Math. Phys. 96, 521–538.

    Article  MathSciNet  MATH  Google Scholar 

  • Beyn, W.-J. (1990a), Global bifurcations and their numerical computation, in D. Roose, B. De Dier and A. Spence, eds, `Continuation and Bifurcations: Numerical Techniques and Applications (Leuven, 1989)’, Vol. 313 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Kluwer Acad. Publ., Dordrecht, pp. 169–181.

    Google Scholar 

  • Beyn, W.-J. (1990b), `The numerical computation of connecting orbits in dynamical systems’, IMA J. Numer. Anal. 9, 379–405.

    Article  MathSciNet  Google Scholar 

  • Broyden, C. (1965), `A class of methods for solving nonlinear simultaneous equa-tions’, Math. Comp. 19, 577–593.

    Article  MathSciNet  MATH  Google Scholar 

  • Fuller, A. (1968), `Condition for a matrix to have only characteristic roots with negative real parts’, J. Math. Anal. Appl. 23, 71–98.

    Article  MathSciNet  MATH  Google Scholar 

  • Shil’nikov, L.P. (1970), `A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type’, Math. USSR-Sb. 10, 91–102.

    Article  MATH  Google Scholar 

  • Broyden, C. (1965), `A class of methods for solving nonlinear simultaneous equa-tions’, Math. Comp. 19, 577–593.

    Article  MathSciNet  MATH  Google Scholar 

  • Shil’nikov, L.P. (1967a), `The existence of a denumerable set of periodic motions in four-dimensional space in an extended neighborhood of a saddle-focus’, Soviet Math. Dokl. 8, 54–58.

    MATH  Google Scholar 

  • Whitley, D. (1983), `Discrete dynamical systems in dimensions one and two’, Bull. London Math. Soc. 15, 177–217.

    Article  MathSciNet  MATH  Google Scholar 

  • Zoladek, H. (1984), `On the versality of a family of symmetric vector-fields in the plane’, Math. USSR-Sb. 48, 463–498.

    Article  MATH  Google Scholar 

  • Chenciner, A. (1988), `Bifurcations de points fixes elliptiques. III. Orbites périodiques de “petites” périodes et élimination résonnante des couples de courbes invariantes’, Inst. Hautes Études Sci. Publ. Math. 66, 5–91.

    MathSciNet  MATH  Google Scholar 

  • Fiedler, B. (1988), Global Bifurcations of Periodic Solutions with Symmetry, Vol. 1309 of Lecture Notes in Mathematics, Springer-Verlag, Berlin.

    Google Scholar 

  • Gheiner, J. (1994), ‘Codimension-two reflection and nonhyperbolic invariant lines’, Nonlinearity 7, 109–184.

    Article  MathSciNet  MATH  Google Scholar 

  • Guckenheimer, J. and Holmes, P. (1983), Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Lukyanov, V.I. (1982), `Bifurcations of dynamical systems with a saddle-point separatrix loop’, Differential Equations 18, 1049–1059.

    MathSciNet  Google Scholar 

  • Palmer, K. (1984), `Exponential dichotomies and transversal homoclinic points’, J. Differential Equations 55, 225–256.

    Article  MathSciNet  MATH  Google Scholar 

  • Sandstede, B. (1997a), `Constructing dynamical systems having homoclinic bifurca- tion points of codimension two’, J. Dynamics Differential Equations 9, 269–288.

    Article  MathSciNet  MATH  Google Scholar 

  • Bazykin, A.D. (1974), Volterra system and Michaelis-Menten equation, in `Problems of Mathematical Genetics’, Novosibirsk State University, Novosibirsk, pp. 103–143.

    Google Scholar 

  • Deng, B. (1993a), `Homoclinic twisting bifurcations and cusp horseshoe maps’, J. Dynamics Differential Equations 5, 417–467.

    Article  MATH  Google Scholar 

  • Deng, B. (1993b), `On Shil’nikov’s homoclinic-saddle-focus theorem’, J. Differential Equations 102, 305–329.

    Article  MathSciNet  MATH  Google Scholar 

  • Hale, J. (1977), Theory of Functional Differential Equations, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Moss, G. and Adelmeyer, M. (1992), Topics in Bifurcation Theory and Applications,World Scientific, Singapore.

    Google Scholar 

  • Khibnik, A.I., Kuznetsov, Yu.A., Levitin, V.V. and Nikolaev, E.V. (1993), ‘Continuation techniques and interactive software for bifurcation analysis of ODEs and iterated maps’, Physica D 62, 360–371.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov, Yu.A., Levitin, V.V. and Skovoroda, A.R. (1996), Continuation of stationary solutions to evolution problems in CONTENT, Report AM-R9611, Centrum voor Wiskunde en Informatica, Amsterdam.

    Google Scholar 

  • Lyubich, M. (2000), `The quadratic family as a qualitatively solvable model of chaos’, Notices Amer. Math. Soc. 47, 1042–1052.

    MathSciNet  MATH  Google Scholar 

  • Nikolaev, E.V. and Shnol, E.E. (1998a), `Bifurcations of cycles in systems of differential equations with a finite symmetry group. I’, J. Dynam. Control Systems 4, 315–341.

    Article  MathSciNet  MATH  Google Scholar 

  • Rheinboldt, W. and Burkardt, J. (1983), `Algorithm 596: A program for a locally-parametrized continuation process’, ACM Trans. Math. Software 9,236–241

    Google Scholar 

  • Sanders, J. (1994), Versa1 normal form computation and representation theory, in E. Tournier, ed., `Computer Algebra and Differential Equations’, Cambridge University Press, Cambridge, pp. 185–210.

    Google Scholar 

  • Shil’nikov, A.L., Nicolis, G. Si Nicolis, C. (1995), `Bifurcation and predictability analysis of a low-order atmospheric circulation model’, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5, 1701–1711.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuznetsov, Y.A. (2004). Bifurcations of Orbits Homoclinic and Heteroclinic to Hyperbolic Equilibria. In: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences, vol 112. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3978-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3978-7_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1951-9

  • Online ISBN: 978-1-4757-3978-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics