Pneumoconioses, Mineral and Vegetable

  • Victor L. Roggli
  • John D. Shelburne

Abstract

The term pneumoconiosis, originally coined by Zenker,1 literally means dust in the lung. Because various types of dust can be found in the lungs of virtually all adults, this term has come to mean the accumulation of abnormal amounts of dust in the lungs and the pathologic response to this dust. A great variety of dust particles have been identified which, when inhaled in sufficient amounts, are capable of producing disease in man. The sources of these particles are diverse, ranging from occupational to environmental exposures. Factors important in determining the pathologic response to a given dust exposure include the number, size, and physiochemical properties of the inhaled particles; the route and efficiency of clearance of the particles from the respiratory tract; the nature and intensity of the host’s inflammatory response to the particles deposited in the lung; the duration of the exposure and interval since initial exposure; and interactions between the inhaled particles from multiple sources and other environmental pollutants, such as cigarette smoke.

Keywords

Tungsten Carbide Coal Dust Asbestos Fiber Open Lung Biopsy Coal Worker Pneumoconiosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zenker FA. Staubinhalations Krankheiten der lungen. 1866.Google Scholar
  2. 2.
    Brody AR, Roe MW. Deposition pattern of inorganic particles at the alveolar level in the lungs of rats and mice. Am Rev Respir Dis 1983; 128: 724–729.PubMedGoogle Scholar
  3. 3.
    Raabe OG. Deposition and clearance of inhaled particles In: Gee JBL, Morgan WKC, Brooks SM, eds. Occupational lung disease. New York: Raven, 1984: 1–37.Google Scholar
  4. 4.
    Langer AM. Crystal faces and cleavage planes in quartz as templates in biological processes. Q Rev Biophys 1978; 2: 543–575.CrossRefGoogle Scholar
  5. 5.
    Spencer H, ed. The pneumoconioses and other occupational lung diseases. In: Pathology of the lung. 4th Ed., Vol. 1. Oxford: Pergamon Press, 1985: 413–510.Google Scholar
  6. 6.
    Abraham JL. Recent advances in pneumoconiosis: The pathologists’ role in etiologic diagnosis. In: Thurlbeck M, ed. The lung: Structure, function, and disease. IAP Monogr. 19. Baltimore: Williams & Wilkins, 1978: 96–137.Google Scholar
  7. 7.
    Roggli VL, Mastin JP, Shelburne JD, Roe M, Brody AR. Inorganic particulates in human lung: relationship to the inflammatory response. In: Lynn WS, ed. Inflammatory cells and lung disease. Boca Raton: CRC Press, 1983: 29–62.Google Scholar
  8. 8.
    Pratt PC. Lung dust content and response in guinea pigs inhaling three forms of silica. Arch Environ Health 1983; 38: 197–204.PubMedCrossRefGoogle Scholar
  9. 9.
    Vallyathan V, Shi X, Dalai NS, Irr W, Castranova V. Generation of free radicals from freshly fractured silica dust: Potential role in silica-induced lung injury. Am Rev Respir Dis 1988; 138: 1213–1219.PubMedCrossRefGoogle Scholar
  10. 10.
    Heppleston AG: Pulmonary repair and fibrosis. In: Glynn LE, ed. Tissue repair and regeneration. Amsterdam: Elsevier/North Holland, 1981: 393–456.Google Scholar
  11. 11.
    Absher M, Mortara M. Effect of silica on the proliferative behavior of human lung fibroblasts. In Vitro 1980; 16: 371–376.PubMedCrossRefGoogle Scholar
  12. 12.
    Kleinerman J. The pathology of some familiar pneumoconioses. Semin Roentgenol 1967; 2: 244–264.CrossRefGoogle Scholar
  13. 13.
    Slavin RE, Swedo JL, Brandes D, Gonzalez-Vitale JC, Osornio-Vargas A. Extrapulmonary silicosis: A clinical, morphologic, and ultrastructural study. Hum Pathol 1985; 16: 393–412.PubMedCrossRefGoogle Scholar
  14. 14.
    Kleinerman J, Green F, Laquer W, et al. Pathology standards for coal workers pneumoconiosis. Arch Pathol Lab Med 1979; 103: 375–432.Google Scholar
  15. 15.
    Buechner HA, Ansari A. Acute silico-proteinosis. Dis Chest 1969; 55: 274–284.PubMedCrossRefGoogle Scholar
  16. 16.
    Heppleston AG, Wright NA, Steward JA. Experimental alveolar lipoproteinosis following the inhalation of silica. J Pathol 1970; 101: 293–307.PubMedCrossRefGoogle Scholar
  17. 17.
    Miller RR, Churg AM, Hutcheon M, Lam S. Pulmonary alveolar proteinosis and aluminum dust exposure. Am Rev Respir Dis 1984; 130: 312–315.PubMedGoogle Scholar
  18. 18.
    Craighead JE, Vallyathan NV. Cryptic pulmonary lesions in workers occupationally exposed to dust containing silica. JAMA 1980; 244: 1939–1941.PubMedCrossRefGoogle Scholar
  19. 19.
    Craighead JE, Kleinerman J, Abraham JL, et al. Diseases associated with exposure to silica and nonfibrous silicate minerals. Arch Pathol Lab Med 1988; 112: 673–720.Google Scholar
  20. 20.
    Goldsmith DF, Winn DM, Shy CM, eds. Silica, silicosis, and cancer: Controversy in occupational medicine. Cancer Research Monographs. New York: Praeger, 1986.Google Scholar
  21. 21.
    Craighead JE. Do silica and asbestos cause lung cancer? Arch Pathol Lab Med 1992; 116: 16–20.PubMedGoogle Scholar
  22. 22.
    Adamson IYR, Bowden DH. Role of monocytes and interstitial cells in the generation of alveolar macrophages. II. Kinetic studies after carbon loading. Lab Invest 1980; 42: 518–524.PubMedGoogle Scholar
  23. 23.
    Pratt PC. Role of silica in progressive massive fibrosis. Arch Environ Health 1968; 16: 734–737.PubMedGoogle Scholar
  24. 24.
    Heppleston AG. The pathological anatomy of simple pneumoconiosis in coal workers. J Pathol Bacteriol 1953; 66: 235–246.PubMedCrossRefGoogle Scholar
  25. 25.
    Marine WM, Gurr D, Jacobsen M. Clinically important respiratory effects of dust exposure and smoking in British coal miners. Am Rev Respir Dis 1988; 137: 106112.Google Scholar
  26. 26.
    Rom WN, Kanner RE, Renzetti AD, et al. Respiratory disease in Utah coal miners. Am Rev Respir Dis 1981; 123: 372–377.PubMedGoogle Scholar
  27. 27.
    Ames RG, Amandus H, Attfield M, Green FY, Vallyathan V. Does coal mine dust present a risk for lung cancer? A case-control study of U.S. coal miners. Arch Environ Health 1983; 38: 331–333.PubMedCrossRefGoogle Scholar
  28. 28.
    Vallyathan NV, Green FHY, Rodman NF, Boyd CB, Althouse R. Lung carcinoma by histologic type in coal miners. Arch Pathol Lab Med 1985; 109: 419–423.PubMedGoogle Scholar
  29. 29.
    Pratt PC, Kilburn KH. Extent of pulmonary pigmentation as an indicator of particulate environmental air pollution. Inhaled Part Vap 1971; 2: 661–670.Google Scholar
  30. 30.
    Watson AJ, Black J, Doig AT, Nagelschmidt G. Pneumoconiosis in carbon electrode makers. Br J Ind Med 1959; 16: 274–285.PubMedGoogle Scholar
  31. 31.
    Schepers GWH, Durkan TM. Experimental study of the effects of talc dust on animal tissue. Arch Ind Health 1955; 12: 317–328.Google Scholar
  32. 32.
    Vallyathan NV, Craighead JE. Pulmonary pathology in workers exposed to nonasbestiform talc. Hum Pathol 1981; 12: 28–35.PubMedCrossRefGoogle Scholar
  33. 33.
    Vallyathan NV. Talc pneumoconiosis. Respir Ther 1980; 10: 34–39.Google Scholar
  34. 34.
    Miller A, Teirstein AS, Bader MD, Bader RA, Selikoff IJ. Talc pneumoconiosis: Significance of sublight-microscopic mineral particles. Am J Med 1971; 50: 395–402.PubMedCrossRefGoogle Scholar
  35. 35.
    Tomashefski JF, Hirsch CS. The pulmonary vascular lesions of intravenous drug abuse. Hum Pathol 1980; 11: 133–145.PubMedCrossRefGoogle Scholar
  36. 36.
    Berner A, Gylseth B, Levy F. Talc dust pneumoconiosis. Acta Pathol Microbiol Scand I981; 89A: 17–21.Google Scholar
  37. 37.
    Crouch E, Churg A. Progressive massive fibrosis of the lung secondary to intravenous injection of talc. A pathologic and mineralogic analysis. Am J Clin Pathol 1983; 80: 520–526.PubMedGoogle Scholar
  38. 38.
    Williams WJ. The pathology of pulmonary sarcoidosis. Proc R Soc Med 1967; 60: 986–988.PubMedGoogle Scholar
  39. 39.
    Abraham JL, Brambilla C. Particle size for differentiation between inhalation and injection pulmonary talco-sis. Environ Res 1980; 21: 94–96.PubMedCrossRefGoogle Scholar
  40. 40.
    Pare JP, Cote G, Fraser RS. Long-term follow-up of drug abusers with intravenous talcosis. Am Rev Respir Dis 1989; 139: 233–241.PubMedCrossRefGoogle Scholar
  41. 41.
    Kleinfeld M, Messite J, Zaki MH. Mortality experiences among talc workers: A follow-up study. J Occup Med 1974; 16: 345–349.PubMedGoogle Scholar
  42. 42.
    Sepulveda M-J, Vallyathan V, Attfield MD, Piacitelli L, Tucker JH. Pneumoconiosis and lung function in a group of kaolin workers. Am Rev Respir Dis 1983; 127: 231–235.PubMedGoogle Scholar
  43. 43.
    Lapenas D, Gale P, Kennedy T, Rawlings W, Dietrich P. Kaolin pneumoconiosis: Radiologic, pathologic, and mineralogic findings. Am Rev Respir Dis 1984; 130: 28 2288.Google Scholar
  44. 44.
    Brody AR, Craighead JE. Cytoplasmic inclusions in pulmonary macrophages of cigarette smokers. Lab Invest 1975; 32: 125–132.PubMedGoogle Scholar
  45. 45.
    White R, Kuhn C. Effects of phagocytosis of mineral dusts on elastase secretion by alveolar and peritoneal exudative macrophages. Arch Environ Health 1980; 35: 106–109.PubMedCrossRefGoogle Scholar
  46. 46.
    Huber W, Saifer MG. Orgotein, the drug version of bovine Cu-Zn superoxide dismutase. I. A summary account of safety and pharmacology in laboratory animals. In: Michelson AM, McCord JM, Fridovich I, eds. Superoxide and superoxide dismutases. New York: Academic Press 1977; 517–536.Google Scholar
  47. 48.
    King EJ, Harrison CV. The effects of kaolin on the lungs of rats. J Pathol Bacteriol 1948; 60: 435–440.CrossRefGoogle Scholar
  48. 48.
    Sabu AP, Shanker R, Zaidi SH. Pulmonary response to kaolin, mica and talc in mice. Exp Pathol 1978; 16: 276282.Google Scholar
  49. 49.
    Morgan WKC, Donner A, Higgins ITT, Pearson MG, Rawlings W, Jr. The effects of kaolin on the lung. Am Rev Respir Dis 1988; 138: 813–820.PubMedCrossRefGoogle Scholar
  50. 50.
    Eisenbud M. Origins of the standards for control of beryllium disease (1947–1949). Environ Res 1982; 27: 79–88.PubMedCrossRefGoogle Scholar
  51. 51.
    Katzenstein A-L A, Askin FB. Pneumoconiosis: In: Surgical pathology of non-neoplastic lung disease. Philadelphia: WB Saunders, 1982: 101–102.Google Scholar
  52. 52.
    Kriebel D, Brain JD, Sprince NL, Kazemi H. The pulmonary toxicity of beryllium. Am Rev Respir Dis 1988; 137: 464–473.PubMedCrossRefGoogle Scholar
  53. 53.
    Mancuso TF. Occupational lung cancer among beryl lium workers. In: Lemen R, Dement DM, eds. Dusts and disease: Occupational and environmental exposures to selected fibrous and particulate dusts. Park Forest South: Pathotox, 1979: 463–471.Google Scholar
  54. 54.
    Infante PF, Wagoner JK, Sprince NL. Bronchogenic cancer and nonneoplastic respiratory disease associated with beryllium exposure. In: Lemen R, Dement JM, eds. Dusts and disease: Occupational and environmental exposures to selected fibrous and particulate dusts. Park Forest South: Pathotox, 1979: 473–482.Google Scholar
  55. 55.
    Morgan WKC, Seaton A. Occupational lung diseases, 2d Ed. Philadelphia: WB Saunders, 1984: 449–497.Google Scholar
  56. 56.
    Vorwald AJ. The beryllium problem: The chronic or delayed disease: Pathologic aspects. In: Vorwald AJ, ed. Pneumoconiosis: Beryllium, bauxite fumes, compensation. New York: Hoeber, 1950: 190–207.Google Scholar
  57. 57.
    Newman LS, Kreiss K, King TE, Jr., Seay S, Campbell PA. Pathologic and immunologic alterations in early stages of beryllium disease: Re-examination of disease definition and natural history. Am Rev Respir Dis 1989; 139: 1479–1486.PubMedCrossRefGoogle Scholar
  58. 58.
    Sferlazza SJ, Beckett WS. The respiratory health of welders. Am Rev Respir Dis 1991; 143: 1134–1148.PubMedCrossRefGoogle Scholar
  59. 59.
    Vallyathan V, Bergeron WN, Robichaux PA, Craighead JE. Pulmonary fibrosis in an aluminum arc welder. Chest 1982; 81: 372–374.PubMedCrossRefGoogle Scholar
  60. 60.
    Chen W-J, Monnat RJ, Chen M, Moffett NK. Aluminum induced pulmonary granulomatosis. Hum Pathol 1978; 9: 705–71 1.Google Scholar
  61. 61.
    Herbert A, Sterling G, Abraham J, Corrin B. Desquamative interstitial pneumonia in an aluminum welder. Hum Pathol 1982; 13: 694–699.PubMedCrossRefGoogle Scholar
  62. 62.
    Stern RM. The assessment of risk: Application to the welding industry lung cancer. The International Institute of Welding Commission, VIII: Safety and Health Doc. II W, VIIL•2034–2083. Copenhagen: Danish Welding Institute, 1983: 1–26.Google Scholar
  63. 63.
    Vallyathan NV, Green FHY, Craighead JE. Recent advances in the study of mineral pneumoconiosis. Pathol Annu 1980; 15: 77–104.PubMedGoogle Scholar
  64. 64.
    Gardner LU. Studies on the relationship of mineral dusts to tuberculosis. Am Rev Tuberc 1923; 71: 344–357.Google Scholar
  65. 65.
    Funahashi A, Schlueter DP, Pintar K, Siegesmund KA, Mandel GS, Mandel NS. Pneumoconiosis in workers exposed to silicon carbide. Am Rev Respir Dis 1984; 129: 635–640.PubMedGoogle Scholar
  66. 66.
    Gross P, de Treville RTP, Cralley LJ, Davis JMG. Pulmonary ferruginous bodies: Development in response to filamentous dusts and a method of isolation and concentration. Arch Pathol 1968; 85: 539–546.PubMedGoogle Scholar
  67. 67.
    Sprince NL, Chamberlin RI, Hales CA, Weber AL, Kazemi H. Respiratory disease in tungsten carbide production workers. Chest 1984; 86: 549–557.PubMedCrossRefGoogle Scholar
  68. 68.
    Tabatowski K, Roggli VL, Fulkerson WJ, Langley RL, Henning T, Johnston WW. Giant cell interstitial pneumonia in a hard-metal worker: Cytologic, histologic, and analytical electron microscopic investigation. Acta Cytol 1988; 32: 240–246.PubMedGoogle Scholar
  69. 69.
    Schepers GWH. The biological action of tungsten carbide and cobalt: Studies on experimental pulmonary histopathology. Arch Ind Health 1955; 12: 140–146.Google Scholar
  70. 70.
    Sprince NL, Oliver LC, Eisen EA, Greene RE, Chamberlin RI. Cobalt exposure and lung disease in tungsten carbide production: A cross-sectional study of current workers. Am Rev Respir Dis 1988; 138: 1220–1226.PubMedCrossRefGoogle Scholar
  71. 71.
    Ohori NP, Sciurba FC, Owens GR, Hodgson MJ, Yousem SA. Giant-cell interstitial pneumonia and hard metal pneumoconiosis: A clinicopathologic study of four cases and review of the literature. Am J Surg Pathol 1989; 13: 581–587.PubMedCrossRefGoogle Scholar
  72. 72.
    Coates EO, Watson JHL. Diffuse interstitial lung disease in tungsten carbide workers. Ann Intern Med 1971; 75: 709–716.PubMedCrossRefGoogle Scholar
  73. 73.
    Ophus EM, Rode L, Gylseth B, Nicholson DG, Saeed K. Analysis of titanium pigments in human lung tissue. Scand J Work Environ Health 1979; 5: 290–296.PubMedCrossRefGoogle Scholar
  74. 74.
    Crouch E, Churg A. Ferruginous bodies and the histologic evaluation of dust exposure. Am J Surg Pathol 1984; 8: 109–116.PubMedCrossRefGoogle Scholar
  75. 75.
    De Vuyst P, Vande Weyer R, De Coster A, et al. Dental technicians pneumoconiosis: A report of two cases. Am Rev Respir Dis 1986; 133: 316–320.PubMedGoogle Scholar
  76. 76.
    Barrett TE, Pietra GG, Maycock RL, Rossman MD, Minda JM, Johns LW. Acrylic resin pneumoconiosis: Report of a case in a dental student. Am Rev Respir Dis 1989; 139: 841–843.PubMedCrossRefGoogle Scholar
  77. 77.
    Loewen GM, Weiner D, McMahan J. Pneumoconiosis in an elderly dentist. Chest 1988; 93: 1312–1313.PubMedCrossRefGoogle Scholar
  78. 78.
    Golden EB, Warnock ML, Hulett LD, Churg AM. Fly ash lung: A new pneumoconiosis? Am Rev Respir Dis 1982; 125: 108–112.PubMedGoogle Scholar
  79. 79.
    Fisher GL, Chrisp CE, Raabe OG. Physical factors affecting the mutagenicity of fly ash from a coal-fired power plant. Science 1979; 204: 879–881.PubMedCrossRefGoogle Scholar
  80. 80.
    Hill JO, Rothenberg SJ, Kanapilly GM, Hanson RL, Scott BR. Activation of immune complement by fly ash particles from coal combustion. Environ Res 1982; 28: 113–122.PubMedCrossRefGoogle Scholar
  81. 81.
    Roggli Vl, Pratt PC, Brody AR. Asbestos content of lung tissue in asbestos-associated diseases: A study of 110 cases. Br J Ind Med 1986; 43: 18–28.Google Scholar
  82. 82.
    Martin TR, Chi EY, Covert DS, et al. Compared effects of inhaled volcanic ash and quartz in rats. Am Rev Respir Dis 1983; 128: 144–152.PubMedGoogle Scholar
  83. 83.
    Vallyathan V, Robinson V, Reasor M, Stettler L, Bernstein R. Comparative in vitro cytotoxicity of volcanic ashes from Mount St. Helens, El Chichon, and Galunggung. J Toxicol Environ Health 1984; 14: 641–654.PubMedCrossRefGoogle Scholar
  84. 84.
    Raub JA, Hatch GE, Mercer RR, Grady M, Hu P-C. Inhalation studies of Mt. St. Helens volcanic ash in animals: II. Lung function, biochemistry, and histology. Environ Res 1985; 37: 72–83.Google Scholar
  85. 85.
    Craighead JE, Adler KB, Emerson RJ, Mossman BT, Woodworth CD. Health effects of Mount St. Helens volcanic dust. Lab Invest 1983; 48: 5–12.PubMedGoogle Scholar
  86. 86.
    Buist AS, Vollmer WM, Johnson LR, Bernstein RS, McCamant LE. A four-year prospective study of the respiratory effects of volcanic ash from Mt. St. Helens. Am Rev Respir Dis 1986; 133: 526–534.PubMedGoogle Scholar
  87. 87.
    Churg A. Nonasbestos pulmonary mineral fibers in the general population. Environ Res 1983; 31: 189–200.PubMedCrossRefGoogle Scholar
  88. 88.
    Baker D, Kupke KG, Ingram P, Roggli VL, Shelburne JD. Microprobe analysis in human pathology. In: Johari O, ed. Scanning electron microscopy, Vol. II. Chicago: SEM, 1985: 659–680.Google Scholar
  89. 89.
    Roggli VL. Nonasbestos mineral fibers in human lungs. In: Russell PE, ed. Microbeam Analysis-1989. San Francisco: San Francisco Press, 1989: 57–59.Google Scholar
  90. 90.
    Lockey JE. Nonasbestos fibrous minerals. Clin Chest Med 1981; 2: 203–218.PubMedGoogle Scholar
  91. 91.
    Wright GW, Kuschner M. The influence of varying lengths of glass and asbestos fibres on tissue response in guinea pigs. In: Walton WH, ed. Inhaled particles IV. Oxford: Pergamon, 1977: 455–474.Google Scholar
  92. 92.
    Stanton MF, Layard M, Tegeris A, et al. Relations of particle dimensions to carcinogenicity in amphibole asbestos and other fibrous minerals. J Natl Cancer Inst 1981; 67: 965–975.PubMedGoogle Scholar
  93. 93.
    Morgan A, Holmes A, Davison W. Clearance of sized glass fibres from the rat lung and their solubility in vivo. Ann Occup Hyg 1982; 25: 317–331.PubMedCrossRefGoogle Scholar
  94. 94.
    Enterline PE, Marsh GM. Environment and mortality of workers from a fibrous glass plant. In: Lemen R, Dement JM, eds. Dusts and disease: Occupational and environmental exposures to selected fibrous and particulate dusts. Park Forest South: Pathotox, 1979: 221–231.Google Scholar
  95. 95.
    Wright GW. Proceedings of the second symposium on occupational exposure to fibrous glass. Washington D.C.; US Government Printing Office, 1976: 126.Google Scholar
  96. 96.
    Bayliss D, Dement J, Wagoner JK, Blejer HP. Mortality patterns among fibrous glass production workers. Ann NY Acad Sci 1976; 271: 324–335.PubMedCrossRefGoogle Scholar
  97. 97.
    Gross P, Tuma J, de Treville TP. Lungs of workers exposed to fiber glass: A study of their pathologic changes and their dust content. Arch Environ Health 1971; 3: 67–76.Google Scholar
  98. 98.
    McDonald AD, McDonald JC. Malignant mesothelioma in North America. Cancer 1980; 46: 1650–1656.PubMedCrossRefGoogle Scholar
  99. 99.
    Pooley FD. Evaluation of fiber samples taken from the vicinity of two villages in Turkey. In: Lemen R, Dement JM, eds. Dusts and disease: Occupational and environmental exposures to selected fibrous and particulate dusts. Park Forest South: Pathotox, 1979: 41–44.Google Scholar
  100. 100.
    Suzuki Y. Carcinogenic and fibrogenic effects of zeolites: Preliminary observations. Environ Res 1982; 27: 433–445.CrossRefGoogle Scholar
  101. 101.
    Baris YI, Artvinli M, Sahin AA. Environmental mesothelioma in Turkey. Ann NY Acad Sci 1979; 330: 423432.Google Scholar
  102. 102.
    Sebastien P, Gaudichet A, Bignon J, Baris YI. Zeolite bodies in human lungs from Turkey. Lab Invest 1981; 44: 420 425.Google Scholar
  103. 103.
    Warheit DB, Hill LH, Brody AR. In vitro effects of crocidolite asbestos and wollastonite on pulmonary macrophages and serum complement. In: Johari O, ed. Scanning electron microscopy. Vol. H. Chicago: SEM, 1984: 919–926.Google Scholar
  104. 104.
    Shasby DM, Peterson M, Hodous T, Boehlecke B, Merchant J. Respiratory morbidity of workers exposed to 122. wollastonite through mining and milling. In: Lernen R, Dement JM, eds. Dusts and disease: Occupational and environmental exposures to selected fibrous and panic- 123. ulate dusts. Park Forest South: Pathotox, 1979: 251–256.Google Scholar
  105. 105.
    Huuskonen MS, Tossavainen A, Koskinen H, et al. Wollastonite exposure and lung fibrosis. Environ Res 1983; 30: 291–304. 124.Google Scholar
  106. 106.
    Moatamed F, Lockey JE, Parry WT. Fiber contamination of vermiculites: A potential occupational and environmental health hazard. Environ Res 1986; 41: 207218. 125.Google Scholar
  107. 107.
    McDonald JC, Armstrong B, Case B, et al. Mesothelioma and asbestos fiber type: Evidence from lung tissue analyses. Cancer 1989; 63: 1544–1547. 126.Google Scholar
  108. 108.
    Ramage JE, Jr., Roggli VL, Bell DY, Piantadosi CA. Interstitial lung disease and domestic wood burning. Am Rev Respir Dis 1988; 137: 1229–1232. 127.Google Scholar
  109. 109.
    McCrone WC, ed. The particle atlas. Vols V and VI. 2d Ed. Ann Arbor: Ann Arbor Science, 1980: 1336, 1634.Google Scholar
  110. 110.
    Martin TR, Meyer SW, Luchtel DR. An evaluation of the 128. toxicity of carbon fiber composites for lung cells in vitro and in vivo. Environ Res 1989; 49: 246–261.PubMedCrossRefGoogle Scholar
  111. 111.
    Dodson RF, O’Sullivan MF, Corn CJ, Williams MJ, Hurst GA. Ferruginous body formation on a nonasbestos mineral. Arch Pathol Lab Med 1985; 109: 849–852. 129.Google Scholar
  112. 112.
    Jephcott CM. Chemical aspects of Shaver’s disease. In: Vorwald AJ, ed. Pneumoconiosis: Beryllium, bauxite fumes, compensation. New York: Hoeber, 1950: 489497. 130.Google Scholar
  113. 113.
    Abramson MJ, Wlodarczyk JH, Saunders NA, Hensley MJ. Does alumium smelting cause lung disease? Am Rev Respir Dis 1989; 139: 1042–1057.PubMedCrossRefGoogle Scholar
  114. 114.
    Mark GJ, Monroe CB, Kazemi H. Mixed pneumoconio- 131. sis: Silicosis, asbestosis, talcosis, and berylliosis. Chest 1979; 75: 726–728.PubMedCrossRefGoogle Scholar
  115. 115.
    Mason GR, Abraham JL, Hoffman L, Cole S, Lippman M, Wasserman K. Treatment of mixed-dust pneumoco- 132. niosis with whole lung lavage. Am Rev Respir Dis 1982; 126: 1102–1107. 133.PubMedGoogle Scholar
  116. 116.
    Sherwin RP, Barman ML, Abraham JL. Silicate pneumoconiosis of farm workers. Lab Invest 1979; 40: 576582.Google Scholar
  117. 117.
    Taylor G. Acute systemic effects of inhaled occupational 134. agents. In: Merchant JA, ed. Occupational respiratory diseases. DMHS (NIOSH) Publ. No. 86102, Washington, DC. U.S. Government Printing Office, 1986: 618.Google Scholar
  118. 118.
    May JJ, Stallones L, Darrow D, Pratt DS. Organic dust 135. toxicity (pulmonary mycotoxicosis) associated with silo unloading. Thorax 1986; 41: 919–923.PubMedCrossRefGoogle Scholar
  119. 119.
    Emanuel DA, Wenzel FJ, Lawton BR. Pulmonary mycotoxicosis. Chest 1975; 67: 293–297. 136.Google Scholar
  120. 120.
    Brinton WT, Vastbinder EE, Greene JW, Marx JJ, Jr., Hutcheson RH, Schaffner W. An outbreak of organic dust toxic syndrome in a college fraternity. JAMA 1987; 258: 1210–1212.PubMedCrossRefGoogle Scholar
  121. 121.
    Lecours R, Laviolette M, Cormier Y. Bronchoalveolar lavage in pulmonary mycotoxicosis (organic dust toxic syndrome). Thorax 1986; 41: 924–926.PubMedCrossRefGoogle Scholar
  122. 122.
    Pratt PC. Comparative prevalence and severity of emphysema and bronchitis at autopsy in cotton mill workers vs. controls. Chest 1981; 79: 495–535.Google Scholar
  123. 123.
    Kennedy SM, Christiani DC, Eisen EA, et al. Cotton dust and endotoxin exposure-response relationships in cotton textile workers. Am Rev Respir Dis 1987; 135: 194200.Google Scholar
  124. 124.
    Pratt PC, Vollmer RT, Miller JA. Epidemiology of pulmonary lesions in nontextile and cotton textile workers: A retrospective autopsy analysis. Arch Environ Health 1980; 35: 133–138.PubMedGoogle Scholar
  125. 125.
    Moran TJ. Emphysema and other chronic lung disease in textile workers: An 18-year autopsy study. Arch Environ Health 1983; 38: 267–276.CrossRefGoogle Scholar
  126. 126.
    Cloutier MM, Rohrbach MS. Effects of endotoxin and tannin isolated from cotton bracts on the airway epithelium. Am Rev Respir Dis 1986; 134: 1158–1162.PubMedGoogle Scholar
  127. 127.
    Ainsworth SK, Neuman RE. Chemotaxins in cotton mill dust: Possible etiologic agent(s) in byssinosis. Am Rev Respir Dis 1981; 124: 280–284.PubMedGoogle Scholar
  128. 128.
    Brody AR, Vallyathan NV, Craighead JE. Distribution and elemental analysis of inorganic particulates in pulmonary tissue. In: Johan O, ed. Scanning electron microscopy, Vol. III. Chicago: IIT Research Institute, 1976: 477–484.Google Scholar
  129. 129.
    Abraham JL, Burnett BR. Quantitative analysis of inorganic particulate burden in situ in tissue sections. In: Johari O, ed. Scanning electron microscopy, Vol. II. Chicago: SEM, 1983: 681–696.Google Scholar
  130. 130.
    Pickett JP, Ingram P, Shelburne JD. Identification of inorganic particulates in a single histologic section using both light microscopy and x-ray microprobe analysis. J Histotechnol 1980; 3: 155–158.CrossRefGoogle Scholar
  131. 131.
    Gylseth B, Ophus EM, Mowe G. Determination of inorganic fiber density in human lung tissue by scanning electron microscopy after low temperature aching. Scand J Work Environ Health 1979; 5: 151–157.PubMedCrossRefGoogle Scholar
  132. 132.
    Ingram P, Shelburne JD, Roggli VL, eds. Microprobe analysis in medicine. New York: Hemisphere, 1989.Google Scholar
  133. 133.
    Marshall AJ. Electron probe x-ray microanalysis. In: Hayat MA, ed. Principles and techniques of scanning electron micrscopy, Vol. 4. New York: Van NostrandReinhold, 1975: 103–173.Google Scholar
  134. 134.
    Berry JP, Henoc P, Galle P, Pariente R. Pulmonary mineral dust: A study of ninety patients by electron microscopy, electron microanalysis and electron micro-diffraction. Am J Pathol 1976; 83: 427–456.PubMedGoogle Scholar
  135. 135.
    Shelburne JD, Wisseman CL, Broda KR, Roggli VL, Ingram P. Lung-nonneoplastic conditions. In: Trump BF, Jones RJ, eds. Diagnostic electron microscopy, Vol. 4. New York: Wiley, 1983: 475–538.Google Scholar
  136. 136.
    Johnson GG, White EW, Strickler D, Hoover R. Image analysis techniques. In: Asher IM, McGrath PP, eds. Symposium on electron microscopy of microfibers: Proceedings of the first FDA Office of Science summer symposium. Washington DC: U.S. Government Printing Office, 1976: 76–82.Google Scholar
  137. 137.
    Roggli VL, Ingram P, Linton RW, Gutknecht WF, Mastin P, Shelburne JD. New techniques for imaging and analyzing lung tissue. Environ Health Perspect 1984; 56: 163–183.PubMedCrossRefGoogle Scholar
  138. 138.
    A.S.T.M. Index: Index to the powder diffraction file. Philadelphia: American Society for Testing Materials.Google Scholar
  139. 139.
    Barrow RE. X-ray diffraction analysis of quartz in lung tissue. Tex Rep Biol Med 1974; 32: 441–448.PubMedGoogle Scholar
  140. 140.
    Lange BA, Haartz JC. Determination of microgram quantities of asbestos by x-ray diffraction: Chrysotile in thin dust layers of matrix material. Anal Chem 1979; 51: 520–525.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Victor L. Roggli
  • John D. Shelburne

There are no affiliations available

Personalised recommendations