Skip to main content

Ceramic Matrix Composites

  • Chapter

Part of the book series: Materials Research and Engineering ((MATERIALS))

Abstract

Ceramic materials in general have a very attractive package of properties: high strength and high stiffness at very high temperatures, chemical inertness, low density, and so on. This attractive package is marred by one deadly flaw, namely, an utter lack of toughness. They are prone to catastrophic failures in the presence of flaws (surface or internal). They are extremely susceptible to thermal shock and any damage done to them during fabrication and/or service. It is therefore understandable that on overriding consideration in ceramic matrix composites (CMCs) has been to toughen the ceramic matrices by incorporating fibers in them and thus exploit the attractive high-temperature strength and environmental resistance of ceramic materials without risking a catastrophic failure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.C. Phillips, in Fabrication of Composites, North-Holland, Amsterdam, 1983, p. 373.

    Google Scholar 

  2. J.A. Cornie, Y.-M. Chiang, D.R. Uhlmann, A. Mortensen, and J.M. Collins, Am. Ceram. Soc. Bull., 65, 293 (1986).

    CAS  Google Scholar 

  3. R.A.J. Sambell, D.C. Phillips, and D.H. Bowen, in Carbon Fibres: Their Place in Modern Technology, The Plastics Institute, London, 1974, p. 16/9.

    Google Scholar 

  4. K.M. Prewo and J.J. Brennan, J. Mater. Sci., 15, 463 (1980).

    Article  CAS  Google Scholar 

  5. J.J. Brennan and K.M. Prewo, J. Mater. Sci., 17, 2371 (1982).

    Article  CAS  Google Scholar 

  6. K.M. Prewo, J.J. Brennan, and G.K. Layden, Am. Ceram. Soc. Bull., 65, 305 (1986).

    CAS  Google Scholar 

  7. E. Fitzer and D. Hegen, Angew. Chem., 91, 316 (1979).

    Article  CAS  Google Scholar 

  8. E. Fitzer and J. Schlichting, Z. Werkstofftech., 11, 330 (1980).

    Article  CAS  Google Scholar 

  9. E. Fitzer and R. Gadow, Am. Ceram. Soc. Bull., 65, 326 (1986).

    CAS  Google Scholar 

  10. D.P. Stinton, A.J. Caputo, and R.A. Lowden, Am. Ceram. Soc. Bull., 65, 347 (1986).

    CAS  Google Scholar 

  11. A.G. Evans, Mater. Sci. Eng., 71, 3 (1985).

    Article  CAS  Google Scholar 

  12. R.W. Davidge, Mechanical Behavior of Ceramics, Camb. U. Press, Cambridge, 1979, p.1 16.

    Google Scholar 

  13. D.C. Phillips, R.A.J. Sambell, and D.H. Bowen, J. Mater. Sci., 7, 1454 (1972).

    Article  CAS  Google Scholar 

  14. K.M. Prewo, J. Mater. Sci., 17, 3549 (1982).

    Article  CAS  Google Scholar 

  15. M. Herron and S.H. Risbud, Am. Ceram. Soc. Bull., 65, 342 (1986).

    CAS  Google Scholar 

  16. P.F. Becher and G.C. Wei, Comm. Am. Ceram. Soc, 67, 259 (1984).

    Google Scholar 

  17. G.C. Wei and P.F. Becher, Am. Ceram. Soc. Bull., 64, 298 (1984).

    Google Scholar 

  18. T.N. Tiegs and P.F. Becher, in Tailoring multiphase and Composite Ceramics, Plenum Press, New York, 1986, p. 639.

    Book  Google Scholar 

  19. A.H. Chokshi and J.R. Porter, J. Am. Ceram. Soc, 68, c144 (1985).

    Article  CAS  Google Scholar 

  20. R.A.J. Sambell, D.H. Bowen, and D.C. Phillips, J. Mater. Sci., 7, 773 (1972).

    Google Scholar 

  21. National Materials Advisory Board, High Temperature Metal and Ceramic Matrix Composites for Oxidizing Atmosphere Applications, NMAB-376, Washington, DC, 1981.

    Google Scholar 

  22. B. Harris, Met. Sci., 14, 351 (1980).

    Google Scholar 

  23. J.A. DiCarlo, J. Met. 37, 44 (June 1985).

    CAS  Google Scholar 

  24. J. Aveston, G.A. Cooper, and A. Kelly, in The Properties of Fibre Composites, IPC Science & Technology Press, Guildford, England, 1971, p. 15.

    Google Scholar 

  25. L.J. Schioler and J.J. Stiglich, Am. Ceram. Soc. Bull., 65, 289 (1986).

    CAS  Google Scholar 

Suggested Reading

  • American Ceramic Society Bulletin, 65 (Feb. 1986): a special issue on ceramic matrix composites.

    Google Scholar 

  • R.F. Davis, H. Palmour III, and R.L. Porter (eds.), Emergent Process Methods for High-Technology Ceramics, Plenum Press New York, 1984.

    Google Scholar 

  • D.C. Phillips, Fiber Reinforced Ceramics, in Fabrication of Ceramics, vol. 4 of Handbook of Composites, North-Holland, Amsterdam, 1983, p. 373.

    Google Scholar 

  • R.E. Tressler and G.L. Messing (eds.), Tailoring Multiphase and Composite Ceramics, Materials Science Research Series, Plenum Press, New York, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chawla, K.K. (1987). Ceramic Matrix Composites. In: Composite Materials. Materials Research and Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3912-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3912-1_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3914-5

  • Online ISBN: 978-1-4757-3912-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics