Ceramic Matrix Composites

  • Krishan Kumar Chawla
Part of the Materials Research and Engineering book series (MATERIALS)


Ceramic materials in general have a very attractive package of properties: high strength and high stiffness at very high temperatures, chemical inertness, low density, and so on. This attractive package is marred by one deadly flaw, namely, an utter lack of toughness. They are prone to catastrophic failures in the presence of flaws (surface or internal). They are extremely susceptible to thermal shock and any damage done to them during fabrication and/or service. It is therefore understandable that on overriding consideration in ceramic matrix composites (CMCs) has been to toughen the ceramic matrices by incorporating fibers in them and thus exploit the attractive high-temperature strength and environmental resistance of ceramic materials without risking a catastrophic failure.


Flexural Strength Borosilicate Glass Fiber Volume Fraction Ceramic Matrix Ceramic Matrix Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.C. Phillips, in Fabrication of Composites, North-Holland, Amsterdam, 1983, p. 373.Google Scholar
  2. 2.
    J.A. Cornie, Y.-M. Chiang, D.R. Uhlmann, A. Mortensen, and J.M. Collins, Am. Ceram. Soc. Bull., 65, 293 (1986).Google Scholar
  3. 3.
    R.A.J. Sambell, D.C. Phillips, and D.H. Bowen, in Carbon Fibres: Their Place in Modern Technology, The Plastics Institute, London, 1974, p. 16/9.Google Scholar
  4. 4.
    K.M. Prewo and J.J. Brennan, J. Mater. Sci., 15, 463 (1980).CrossRefGoogle Scholar
  5. 5.
    J.J. Brennan and K.M. Prewo, J. Mater. Sci., 17, 2371 (1982).CrossRefGoogle Scholar
  6. 6.
    K.M. Prewo, J.J. Brennan, and G.K. Layden, Am. Ceram. Soc. Bull., 65, 305 (1986).Google Scholar
  7. 7.
    E. Fitzer and D. Hegen, Angew. Chem., 91, 316 (1979).CrossRefGoogle Scholar
  8. 8.
    E. Fitzer and J. Schlichting, Z. Werkstofftech., 11, 330 (1980).CrossRefGoogle Scholar
  9. 9.
    E. Fitzer and R. Gadow, Am. Ceram. Soc. Bull., 65, 326 (1986).Google Scholar
  10. 10.
    D.P. Stinton, A.J. Caputo, and R.A. Lowden, Am. Ceram. Soc. Bull., 65, 347 (1986).Google Scholar
  11. 11.
    A.G. Evans, Mater. Sci. Eng., 71, 3 (1985).CrossRefGoogle Scholar
  12. 12.
    R.W. Davidge, Mechanical Behavior of Ceramics, Camb. U. Press, Cambridge, 1979, p.1 16.Google Scholar
  13. 13.
    D.C. Phillips, R.A.J. Sambell, and D.H. Bowen, J. Mater. Sci., 7, 1454 (1972).CrossRefGoogle Scholar
  14. 14.
    K.M. Prewo, J. Mater. Sci., 17, 3549 (1982).CrossRefGoogle Scholar
  15. 15.
    M. Herron and S.H. Risbud, Am. Ceram. Soc. Bull., 65, 342 (1986).Google Scholar
  16. 16.
    P.F. Becher and G.C. Wei, Comm. Am. Ceram. Soc, 67, 259 (1984).Google Scholar
  17. 17.
    G.C. Wei and P.F. Becher, Am. Ceram. Soc. Bull., 64, 298 (1984).Google Scholar
  18. 18.
    T.N. Tiegs and P.F. Becher, in Tailoring multiphase and Composite Ceramics, Plenum Press, New York, 1986, p. 639.CrossRefGoogle Scholar
  19. 19.
    A.H. Chokshi and J.R. Porter, J. Am. Ceram. Soc, 68, c144 (1985).CrossRefGoogle Scholar
  20. 20.
    R.A.J. Sambell, D.H. Bowen, and D.C. Phillips, J. Mater. Sci., 7, 773 (1972).Google Scholar
  21. 21.
    National Materials Advisory Board, High Temperature Metal and Ceramic Matrix Composites for Oxidizing Atmosphere Applications, NMAB-376, Washington, DC, 1981.Google Scholar
  22. 22.
    B. Harris, Met. Sci., 14, 351 (1980).Google Scholar
  23. 23.
    J.A. DiCarlo, J. Met. 37, 44 (June 1985).Google Scholar
  24. 24.
    J. Aveston, G.A. Cooper, and A. Kelly, in The Properties of Fibre Composites, IPC Science & Technology Press, Guildford, England, 1971, p. 15.Google Scholar
  25. 25.
    L.J. Schioler and J.J. Stiglich, Am. Ceram. Soc. Bull., 65, 289 (1986).Google Scholar

Suggested Reading

  1. American Ceramic Society Bulletin, 65 (Feb. 1986): a special issue on ceramic matrix composites.Google Scholar
  2. R.F. Davis, H. Palmour III, and R.L. Porter (eds.), Emergent Process Methods for High-Technology Ceramics, Plenum Press New York, 1984.Google Scholar
  3. D.C. Phillips, Fiber Reinforced Ceramics, in Fabrication of Ceramics, vol. 4 of Handbook of Composites, North-Holland, Amsterdam, 1983, p. 373.Google Scholar
  4. R.E. Tressler and G.L. Messing (eds.), Tailoring Multiphase and Composite Ceramics, Materials Science Research Series, Plenum Press, New York, 1986.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Krishan Kumar Chawla
    • 1
  1. 1.Dept. of Materials and Metallurgical EngineeringNew Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations