Composite Materials pp 229-258 | Cite as
Strength, Fracture, Fatigue, and Design
Chapter
Abstract
We discussed in Chap. 10 the prediction of elastic and thermal properties, knowing the component properties. A particularly simple but crude form of this is the rule of mixtures, which works reasonably well for predicting the longitudinal elastic constants. Unfortunately, the same cannot be said for the strength of a fiber composite. It is instructive to examine why the rule of mixtures approach does not work for strength properties.
Keywords
Fiber Length Fiber Composite Fiber Volume Fraction Fiber Strength Fiber Fracture
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.K.K. Chawla and M. Metzger, J. Mater. Sci., 7, 34 (1972).CrossRefGoogle Scholar
- 2.K.K. Chawla, Metallography, 6, 155 (1973).CrossRefGoogle Scholar
- 3.K.K. Chawla, Philos. Mag., 28, 401 (1973).CrossRefGoogle Scholar
- 4.R.J. Arsenault and R.M. Fisher, Scripta Met., 17, 67 (1983).CrossRefGoogle Scholar
- 5.K.K. Chawla, J. Singh, and J.M. Rigsbee, Metallography, 19, 119 (1986).CrossRefGoogle Scholar
- 6.M. Vogelman, R.J. Arsenault, and R.M. Fisher, Met. Trans. A, 17A, 379 (1986).Google Scholar
- 7.L.J. Ebert and J.D. Gadd, in Fiber Composite Materials, ASM, Metals Park, OH, 1965, p. 89.Google Scholar
- 8.A. Kelly and H. Lilholt, Philos. Mag., 20, 311 (1969).CrossRefGoogle Scholar
- 9.A. Kelly and G.J. Davies, Metallurgical Rev., 10, 1 (1965).Google Scholar
- 10.B.W. Rosen, in Fiber Composite Materials, American Society for Metals, Metals Park, OH, 1965, p. 58.Google Scholar
- 11.J. R. Lager and R.R. June, J. Composite Mater., 3, 48 (1969).CrossRefGoogle Scholar
- 12.N.L. Hancox, J. Mater. Sci., 10, 234 (1975).CrossRefGoogle Scholar
- 13.M.R. Piggott and B. Harris, J. Mater. Sci., 15, 2523 (1980).CrossRefGoogle Scholar
- 14.M.R. Piggott, in Developments in Reinforced Plastics —4, Elsevier Applied Science Publishers, London, 1984, p. 131.CrossRefGoogle Scholar
- 15.D.K. Hale and A. Kelly, Ann. Rev. Mater. Sci., 2,405 (1972).CrossRefGoogle Scholar
- 16.J.O. Outwater and M.C. Murphy, in Proceedings of the 24th SPI/RP Conference, paper 11–6, Society of Plastics Industry, New York, 1969.Google Scholar
- 17.A. Kelly, Proc. R. Soc. London, A319, 95 (1970).Google Scholar
- 18.A.H. Cottrell, Proc. R. Soc, 282A, 2 (1964).Google Scholar
- 19.G.A. Cooper and A. Kelly, J. Mech. Phys. Solids, 15, 279 (1967).CrossRefGoogle Scholar
- 20.A. Kelly, in The Properties of Fibre Composites, IPS Science & Technology Press, Guildford, Surrey, U.K., 1971, p. 5.Google Scholar
- 21.G.A. Cooper, J. Mater. Sci., 5, 645 (1970).CrossRefGoogle Scholar
- 22.J. Cook and J.E. Gordon, Proc. R. Soc. London, A228, 508 (1964).Google Scholar
- 23.H. Saghizadeh and C.K.H. Dharan, American Society of Mechanical Engineering, paper # 85-WA/Mats-15, presented at the Winter Annual Meeting, Miami Beach, FL, Nov. 17–21, 1985.Google Scholar
- 24.B.D. Coleman, J. Mech. Phys. Solids, 7, 60 (1958).CrossRefGoogle Scholar
- 25.B.W. Rosen, in Fiber Composite Materials, American Society for Metals, Metals Park, OH, 1965, p.37.Google Scholar
- 26.B.W. Rosen, in Mechanics of Composite Materials’. Recent Advances, Pergamon Press, Oxford, 1983, p. 105.Google Scholar
- 27.H.E. Daniels, Proc. R. Soc, A183, 405 (1945).Google Scholar
- 28.C. Zweben and B.W. Rosen, J. Mech. Phys. Solids, 18, 189 (1970).CrossRefGoogle Scholar
- 29.R.E. Rowlands, in Failure Mechanics of Composites, vol. 3 of the series Handbook of Composites, North-Holland, Amsterdam, 1985, p. 71.Google Scholar
- 30.S.W. Tsai and E.M. Wu, J. Composite Mater., 5, 58 (1971).CrossRefGoogle Scholar
- 31.S.W. Tsai and H.T. Hahn, Introduction to Composite Materials, Technomic, Westport, CT, 1980.Google Scholar
- 32.O. Hoffman, J. Composite Mater., 1, 200 (1967).CrossRefGoogle Scholar
- 33.S.C. Cowin, J. Appl. Mech., 46, 832 (1979).CrossRefGoogle Scholar
- 34.R.B. Pipes and B.W. Cole, J. Compsite Mater., 7, 246 (1973).CrossRefGoogle Scholar
- 35.H.T. Hahn and L. Lorenzo, in Advances in Fracture Research, ICF6, New Delhi, India, Pergamon Press, Oxford, 1984, vol. 1, p. 549.Google Scholar
- 36.L.J. Broutman and S. Sahu, in Proceedings of the 24th Annual Technical Conference, Society of Plastics Industry, New York, 1969, Sect. 11-D, p. 1.Google Scholar
- 37.H.T. Hahn and R.Y. Kim, J. Composite Mater., 10, 156 (1976).CrossRefGoogle Scholar
- 38.A.L. Highsmith and K.L. Reifsnider, in Damage in Composite Materials, ASTM STP 775, American Society of Testing & Materials, Philadelphia, 1982, p. 103.Google Scholar
- 39.N. Laws, G.J. Dvorak, and M. Hejazi, Mech. Mater., 2, 123 (1983).CrossRefGoogle Scholar
- 40.R. Talreja, Fatigue of Composite Materials, Solid Mechanics Department, Technical University of Denmark, Lyngby, Denmark, 1985.Google Scholar
- 41.K.L. Reifsnider, E.G. Henneke, W.W. Stinchcomb, and J.C. Duke, in Mechanics of Composite Materials, Pergamon Press, New York, 1983, p. 399.Google Scholar
- 42.T.K. O’Brien and K.L. Reifsnider, J. Composite Mater., 15, 55 (1981).CrossRefGoogle Scholar
- 43.R. Talreja, in Advances in Composite Materials, ICCM/3, Pergamon Press, Oxford, vol. 2, p. 1732.Google Scholar
- 44.S.L. Ogin, P.A. Smith, and P.W.R. Beaumont, Composites Sci. Tech., 22, 23 (1985).CrossRefGoogle Scholar
- 45.A. Poursartip, M.F. Ashby, and P.W.R. Beaumont, in Proceedings of the 3rd Rise International Symposium on Metallurgy & Materials Science, Roskilde, Denmark, 1982, p. 279.Google Scholar
- 46.H.S. Kliger, Machine Des., 51, 150 (Dec. 6, 1979).Google Scholar
- 47.W.T. Fujimoto and B.R. Noton, in Proceedings of the 6th St. Louis Symposium on Composite Material Engineering & Design, American Society for Metals, Metals Park, OH, 1973, p. 335.Google Scholar
- 48.D.P. Seraphim, D.E. Barr, W.T. Chen, and G.P. Schmitt, in Advanced Thermoset Composites, Van Nostrand Reinhold, New York, 1986, p. 110.Google Scholar
- 49.H. Bergmann, in Carbon Fibre and Their Composites, Springer-Verlag, Berlin, 1985, p. 184.CrossRefGoogle Scholar
- 50.P.L.N. Murthy and C.C. Chamis, J. Composite Tech. Res., 8, 8 (1986).CrossRefGoogle Scholar
- 51.P.L.N. Murthy and C.C. Chamis, ICAN: Integrated Composite Analyzer Users and Programmers’ Manual, NASA TP-2515, 1985.Google Scholar
- 52.J.P. Riggs, in Encyclopedia of Polymer Science & Engineering, 2nd ed., vol. 2, John Wiley & Sons, New York, 1985, p. 640.Google Scholar
- 53.L.B. Vogelsang and J.W. Gunnik, Delft University of Technology Report LR-400, Delft, The Netherlands, Aug., 1983.Google Scholar
- 54.L.N. Mueller, J.L. Prohaska, and J.W. Davis, “ARALL: Introduction of a new composite material”, paper presented at the AIAA Aerospace Eng. Conf. &; Show, Los Angeles, CA, Feb. 1985.Google Scholar
Suggested Reading
- L.J. Broutman (ed.), Fracture and Fatigue, Academic Press, New York, 1974.Google Scholar
- C.C. Chamis (ed.), Structural Design and Analysis, Parts I and II, Academic Press, New York, 1974.Google Scholar
- B. Harris, Fibre Reinforced Composites, Institute of Metals, London, 1985.Google Scholar
- W.S. Johnson (ed.), Delamination and Debonding of Materials, ASTM STP 876, American Society of Testing and Materials, Philadelphia, 1985.Google Scholar
- G. Lubin (ed.), Handbook of Composites, Van Nostrand Reinhold, New York, 1982.Google Scholar
- E. Scala, Composite Materials for Combined Function, Hayden Book Co., Rochelle Park, NJ, 1978.Google Scholar
- M.M. Schwartz, Composite Materials Handbook, McGraw-Hill, New York, 1984.Google Scholar
- R. Talreja, Fatigue of Composite Materials, Department of Solid Mechanics, Technical University of Denmark, Lyngby, Denmark, 1985.Google Scholar
- S.W. Tsai, Composites Design 1986, Think Composites, Dayton, OH, 1986.Google Scholar
Copyright information
© Springer Science+Business Media New York 1987