Micromechanics of Composites

  • Krishan Kumar Chawla
Part of the Materials Research and Engineering book series (MATERIALS)


In this chapter we consider the results of incorporating fibers in a matrix. The matrix, besides holding the fibers together, has the important function of transferring the applied load to the fibers. It is of great importance to be able to predict the properties of a composite, given the component properties and their geometric arrangement. We examine various micromechanical aspects of fibrous composites. A particularly simple case is the rule of mixtures, a rough tool that considers the composite properties as volume-weighted averages of the component properties. It is important to realize that the rule of mixtures works in only certain simple situations. Composite density is an example where the rule of mixtures is applied readily. In the case of mechanical properties, there are certain restrictions to its applicability. If more precise information is desired, it is better to use more sophisticated approaches based on the theory of elasticity.


Elastic Constant Poisson Ratio Radial Displacement Load Transfer Fiber Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Voigt, Lehrbuch der Kristallphysik, Teubner, Leipzig, 1910.Google Scholar
  2. 2.
    A. Reuss, Z. Angew. Math. Mech., 9, 49 (1929).CrossRefGoogle Scholar
  3. 3.
    C.C. Chamis and G.P. Sendeckyj, J. Composite Mater., 2, 332 (1968).CrossRefGoogle Scholar
  4. 4.
    J.F. Nye, Physical Properties of Crystals, Oxford University Press, London, 1969, p. 131.Google Scholar
  5. 5.
    Z. Hashin and B.W. Rosen, J. Appl. Mech., 31, 233 (1964), ASME.CrossRefGoogle Scholar
  6. 6.
    B.W. Rosen, Composites, 4, 16 (Jan. 1973).CrossRefGoogle Scholar
  7. 7.
    C.C. Chamis, NASA Tech. Memo. 83320, 1983 [presented at the 38th Annual Conference of the Society of Plastics Industry (SPI), Houston, TX, Feb. 1983].Google Scholar
  8. 8.
    R. Hill, J. Mech. Phys. Solids, 12, 199 (1964).CrossRefGoogle Scholar
  9. 9.
    R. Hill, J. Mech. Phys. Solids, 13, 189 (1965).CrossRefGoogle Scholar
  10. 10.
    J.C. Halpin and S.W. Tsai, “Environmental Factors Estimation in Composite Materials Design,” AFML TR 67–423 (1967).Google Scholar
  11. 11.
    J.C. Halpin and J.L. Kardos, Polym. Eng. Sci., 16, 344 (1976).CrossRefGoogle Scholar
  12. 12.
    J.L. Kardos, CRC Crit. Rev. Solid State Sci., 3, 419 (1971).Google Scholar
  13. 13.
    J.M. Whitney, J. Structural Div. Am. Soc. Civil Eng., 113 (Jan. 1973).Google Scholar
  14. 14.
    L.E. Nielsen, Mechanical Properties of Polymers and Composites, vol. 2, Marcel Dekker, New York, 1974.Google Scholar
  15. 15.
    A. Kelly, in Chemical and Mechanical Behavior of Inorganic Materials, Wiley-Interscience, New York, 1970, p. 523.Google Scholar
  16. 16.
    A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th ed., Dover, New York, p. 144.Google Scholar
  17. 17.
    A. Kelly and H. Lilholt, Philos. Mag., 20, 175 (1971).Google Scholar
  18. 18.
    P.S. Turner, J. Res. Natl. Bur. Stand., 37, 239 (1946).CrossRefGoogle Scholar
  19. 19.
    E.H. Kerner, Proc. Phys. Soc. London, B69, 808 (1956).Google Scholar
  20. 20.
    R.A. Schapery, J. Composite Mater., 2, 311, 1969.Google Scholar
  21. 21.
    E. Behrens, J. Composite Mater., 2, 2 (1968).CrossRefGoogle Scholar
  22. 22.
    K.K. Chawla, Philos. Mag., 28, 401 (1973).CrossRefGoogle Scholar
  23. 23.
    K.K. Chawla, Metallography, 6, 155 (1973).CrossRefGoogle Scholar
  24. 24.
    H. Poritsky, Physics, 5, 406 (1934).CrossRefGoogle Scholar
  25. 25.
    K.K. Chawla and M. Metzger, J. Mater. Sci.,7, 34 (1972).CrossRefGoogle Scholar
  26. 26.
    K.K. Chawla, in Proceedings of the International Conference on Composite Materials/1975, TMS-AIME, New York, 1976, p. 535.Google Scholar
  27. 27.
    K.K. Chawla, J. Mater. Sci., 11, 1567 (1976).CrossRefGoogle Scholar
  28. 28.
    K.K. Chawla, in Grain Boundaries in Engineering Materials, Claitor’s Publishing Division, Baton Rouge, LA, 1974, p. 435.Google Scholar
  29. 29.
    R.J. Arsenault and R.M. Fisher, Scripta Met., 17, 67 (1983).CrossRefGoogle Scholar
  30. 30.
    M. Vogelsang, R.J. Arsenault, and R.M. Fisher, Met. Trans. A, 7A, 379 (1986).CrossRefGoogle Scholar
  31. 31.
    A. Kelly, Strong Solids, 2nd ed., Clarendon Press, Oxford, 1973, p. 157.Google Scholar
  32. 32.
    D.M. Schuster and Scala, Trans. Met. Soc.-AIME, 230, 1635 (1964).Google Scholar
  33. 33.
    N.F. Dow, General Electric Report No. R63-SD-61, 1963.Google Scholar

Suggested Reading

  1. B.D. Agarwal and L.J. Broutman, Analysis and Performance of Fiber Composites, John Wiley & Sons, New York, 1980.Google Scholar
  2. D. Hull, An Introduction to Composite Materials, Cambridge University Press, Cambridge, U.K., 1981.Google Scholar
  3. A. Kelly, Strong Solids, 2nd ed., Clarendon Press, Oxford, 1973.Google Scholar
  4. M.R. Piggott, Load-Bearing Fibre Composites, Pergamon Press, Oxford, 1980.Google Scholar
  5. V.K. Tewary, Mechanics of Fibre Composites, Halsted Press, New York, 1978.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Krishan Kumar Chawla
    • 1
  1. 1.Dept. of Materials and Metallurgical EngineeringNew Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations