Insulin Secretion in Type II Diabetes Mellitus

  • Yogish C. Kudva
  • Peter C. Butler
Part of the Contemporary Biomedicine book series (CB, volume 15)


Noninsulin-dependent diabetes mellitus (NIDDM) is characterized by both impaired insulin secretion and action (1). Insulin secretion is abnormal in first-degree relatives of patients with NIDDM with normal (2) or abnormal (3) glucose tolerance. This implies that defective insulin secretion is present early and plays a primary role in the pathogenesis of NIDDM. Since it is clear that there is a molecular genetic basis for NIDDM, the question arises regarding whether the mutations that predispose an individual to NIDDM are related to insulin action or insulin secretion.


Insulin Secretion Plasma Insulin Concentration Islet Amyloid Polypeptide Glucokinase Gene Sulin Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DeFronzo RA. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 1988; 37 (6): 667–687.PubMedGoogle Scholar
  2. 2.
    Schmitz O, Perksen N, Nyholm B, Skjærbærk C, Butler PC, Veldhuis J, Pincus SM. Evidence of disorderly and nonstationary insulin secretion in relatives of patients with NIDDM. Diabetes, 1996, submitted.Google Scholar
  3. 3.
    O’Rahilly S, Turner RC, Matthews DR. Impaired pulsatile secretion of insulin in relatives of patients with non-insulin-dependent diabetes. New Engl J Med 1988; 318: 1225–1230.PubMedCrossRefGoogle Scholar
  4. 4.
    Kadowaki T, Miyake Y, Hagura R, Akanuma Y, Kajinuma H, Kuzuya N, Takaku F, Kosaka K. Risk factors for worsening to diabetes in subjects with impaired glucose tolerance. Diabetologia 1984; 26: 44–49.PubMedCrossRefGoogle Scholar
  5. 5.
    Felber JP, Golay A, Jequier E, Curchod B, Temler E, DeFronzo RA, Ferrannini E. The metabolic consequences of long-term human obesity. Int J Obes 1988; 12: 377–389.PubMedGoogle Scholar
  6. 6.
    Groop LC, Kankuri M, Schanlin-Jantti C, Ekstrand A, Nikula-Ijas P, Widen E, Kuismanen E, Eriksson J, Franssila-Kallunki A, Saloranta C, Koskimies S. Association between polymorphism of the glycogen synthase gene and non-insulin-dependent diabetes mellitus. New Engl J Med 1993; 328: 10–14.PubMedCrossRefGoogle Scholar
  7. 7.
    Perley JM, Kipnis DM. Plasma insulin responses to oral and intravenous glucose studies in normal and diabetic subjects. J Clin Invest 1967; 16: 1954–1962.CrossRefGoogle Scholar
  8. 8.
    Porte D Jr, Pupo AA. Insulin responses to glucose: evidence for a two pool system in man. J Clin Invest 1969; 48 (12): 2309–2313.PubMedCrossRefGoogle Scholar
  9. 9.
    Palmer JP, Benson JW, Walter RM, Ensinck JW. Arginine-stimulated acute phase of insulin and glucagon secretion in diabetic subjects. J Clin Invest 1976; 58: 565–570.PubMedCrossRefGoogle Scholar
  10. 10.
    Goodner CJ, Walike BC, Koerker DJ, Ensinck JW, Brown AC, Chideckel EW, Palmer J, Kalnasy L. Insulin, glucagon and glucose exhibit synchronous, sustained oscillations in fasting monkeys. Science Wash DC 1977; 195: 177–179.CrossRefGoogle Scholar
  11. 11.
    Perksen N, Munn S, Steers J, Vore S, Veldhuis J, Butler PC. Pulsatile insulin secretion accounts for 70% of total insulin secretion during fasting. Am J Physiol 1995; 269 (Endocrinol Metab 32): E478 - E488.Google Scholar
  12. 12.
    Perksen N, Munn S, Steers J, Veldhuis JD, Butler PC. Effects of glucose ingestion versus infusion on pulsatile insulin secretion: the incretin effect is achieved by amplification of insulin secretory burst mass. Diabetes,1996; 45: 1317–1323.Google Scholar
  13. 13.
    Perksen N, Munn SR, Steers J, Veldhuis JD, Butler PC. Effects of somatostatin on pulsatile insulin secretion; selective inhibition of insulin burst mass. Am J Physio11996; 270: E1043 - E1049.Google Scholar
  14. 14.
    Stagner JI, Samols E, Weir GC. Sustained oscillations of insulin from the isolated canine pancreas during exposure to a constant glucose infusion. J Clin Invest 1980; 65: 939–942.PubMedCrossRefGoogle Scholar
  15. 15.
    Synchronous oscillations of cytoplasmic Cat+ and insulin release in glucose-stimulated pancreatic islets. J Biol Chem 1994; 269 (12): 8749–8753.Google Scholar
  16. 16.
    Yaney GC, Schultz V, Cunningham BA, Corkey BE, Tornheim K. Phosphofructokinase isozymes in pancreatic islets and clonal B-cells (INS-1). Diabetologia 1995; 38: (Suppl 1) A16.Google Scholar
  17. 17.
    King BF, Love JA, Szurszewski JH. Intracellular recordings from pancreatic ganglia of the cat. J Physiol 1989; 419: 379–403.PubMedGoogle Scholar
  18. 18.
    Perksen N, Munn S, Ferguson D, O’Brien TD, Veldhuis J, Butler PC. Coordinate pulsatile insulin secretion by chronic intraportally transplanted islets in the isolated perfused rat liver. J Clin Invest 1994; 94: 219–227.CrossRefGoogle Scholar
  19. 19.
    Chou HF, Ipp E. Pulsatile insulin secretion in isolated rat islets. Diabetes 1990; 39: 112–117.PubMedCrossRefGoogle Scholar
  20. 20.
    Bonner-Weir S, Weir GC. The Islets of Langerhans and Diabetes Mellitus. Kalamazoo: Upjohn, 1986.Google Scholar
  21. 21.
    Hoet JJ, Reusens B, Remade C. Anatomy, developmental biology and pathology of the pancreatic islets. In: Endocrinology. Degroot LJ, ed. Philadelphia: Saunders, pp. 1277–1295, 1995.Google Scholar
  22. 22.
    Matschinsky FM. Glucokinase as glucose sensor and metabolic signal generator in pancreatic B cells and hepatocytes. Diabetes 1990; 39: 647–652.PubMedCrossRefGoogle Scholar
  23. 23.
    Howell SL, Jones PM, Persaud SJ. Regulation of insulin secretion: the role of second messengers. Diabetologia 1994; 37 (Suppl 2) S 30–35.CrossRefGoogle Scholar
  24. 24.
    Boyd AE. The role of ion channels in insulin secretion. J Cell Biochem 1992; 48: 234–241.CrossRefGoogle Scholar
  25. 25.
    Ashcroft SJH. Protein phosphorylation and beta-cell function. Diabetologia 1994; 37 (Suppl 2): S21–29.PubMedCrossRefGoogle Scholar
  26. 26.
    Prentki M, Vischer S, Clay Glennon M, Regazzi R, Deeney JT, Corkey BE. Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J Biol Chem 1992; 267: 5802–5810.PubMedGoogle Scholar
  27. 27.
    Welsh M, Scherberg N, Gilmore R. Steiner DF. Translational control of insulin biosynthesis: evidence for regulation of elongation, initiation and signal-recognition particle-mediated translational arrest by glucose. Biochem J 1986; 235: 459–467.PubMedGoogle Scholar
  28. 28.
    Hutton JC. Insulin secretory granule biogenesis and the pro-insulin-processing endopeptidases. Diabetologia 1994; 37 (Suppl 2): S 48–56.CrossRefGoogle Scholar
  29. 29.
    Rhodes CJ, Alarcon C. What 13-cell defect could lead to hyperproinsulinemia in NIDDM? Some clues from recent advances made in understanding the proinsulin-processing mechanism. Diabetes 1994; 43: 511–517.PubMedCrossRefGoogle Scholar
  30. 30.
    Liu G, Coulston A, Chen Y-DI, Reaven GM. Does day-long absolute hypoinsulinemia characterize the patient with non-insulin-dependent diabetes mellitus. Metabolism 1983; 32: 754–756.PubMedCrossRefGoogle Scholar
  31. 31.
    Davies MJ, Metcalfe J, Gray IP, Day JL, Hales CN. Insulin deficiency rather than hyperinsulinemia in newly diagnosed type 2 diabetes mellitus. Diabetic Med 1993; 10: 305–312.PubMedCrossRefGoogle Scholar
  32. 32.
    Butler PC, Rizza RA. Contribution to postprandial hyperglycemia and effect on initial splanchnic glucose clearance of hepatic glucose cycling in glucose-intolerant or NIDDM patients. Diabetes 1991; 40: 73–81.PubMedCrossRefGoogle Scholar
  33. 33.
    Sando H, Lee YS, Iwamato Y, Ikeuchi M, Kosaka K. Isoproterenol-stimulated C-peptide and insulin secretion in diabetic and non-obese normal subjects: decreased hepatic extraction of endogenous insulin in diabetics. J Clin Endocrinol Metab 1980; 51: 1143–1149.PubMedCrossRefGoogle Scholar
  34. 34.
    Seltzer HS, Allen EW, Heron AL Jr, Brennan MT. Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. J Clin Invest 1967; 46: 323–335.PubMedCrossRefGoogle Scholar
  35. 35.
    Porte D Jr. 13-cells in type II diabetes mellitus. Diabetes 1991; 40: 166–180.CrossRefGoogle Scholar
  36. 36.
    Halter JB, Graf RJ, Porte D. Potentiation of insulin secretory responses by plasma glucose levels in man: evidence that hyperglycemia in diabetes compensates for impaired glucose potentiation. J Clin Endocrinol Metab 1979; 48 (6): 946–954.PubMedCrossRefGoogle Scholar
  37. 37.
    Srikanta S, Ganda OP, Jackson RA, Gleason RE, Kaldany A, Garovoy MR, Milford EL, Carpenter CB, Soeldner JS, Eisenbarth GS. Type I diabetes mellitus in monozygotic twins: chronic progressive beta cell dysfunction. Ann Intern Med 1983; 99 (3): 320–326.PubMedGoogle Scholar
  38. 38.
    Seaquist ER, Robertson RP. Effects of hemipancreatectomy on pancreatic alpha and beta cell function in healthy human donors. J Clin Invest 1992; 89 (6): 1761–1766.PubMedCrossRefGoogle Scholar
  39. 39.
    Cucinotta D, Conti Nibali S, Arrigo T, Di Benedetto A, Magazzu G, Di Cesare E, Costantino A, Pezzino V, De Luca F. Beta cell function, peripheral sensitivity to insulin and islet cell autoimmunity in cystic fibrosis patients with normal glucose tolerance. Horm Res 1990; 34: 33–38.PubMedCrossRefGoogle Scholar
  40. 40.
    Alarcon C, Leahy JL, Schuppin GT, Rhodes CJ. Increased secretory demand rather than a defect in the proinsulin conversion mechanism causes hyperproinsulinemia in a glucose-infusion rat model of non-insulin-dependent diabetes mellitus. J Clin Invest 1995; 95 (3): 1032–1039.PubMedCrossRefGoogle Scholar
  41. 41.
    Ward WK, Lacava EC, Pawuette TL, Beard JC, Wallum BJ, Porte D Jr. Disproportionate elevation of immunoreactive proinsulin in type 2 (non-insulin-dependent) diabetes mellitus and in experimental insulin resistance. Diabetologia 1987; 30: 698–702.PubMedCrossRefGoogle Scholar
  42. 42.
    Pote D Jr, Kahn SE. Hyperproinsulinemia and amyloid in NIDDM. Clues to etiology of islet 13-cell dysfunction. Diabetes 1989; 38: 1333–1336.CrossRefGoogle Scholar
  43. 43.
    O’Rahilly S, Gray H, Humphreys PJ, Krook A, Polonsky KS, White A, Gibson S, Taylor K, Carr C. Impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function. N Engl J Med 1995; 333 (21): 1386–1390.PubMedCrossRefGoogle Scholar
  44. 44.
    Lang DA, Matthews DR, Peto J, Turner RC. cyclic oscillations of basal plasma glucose and insulin concentrations in human beings. N Engl J Med 1979; 301: 1023–1027.PubMedCrossRefGoogle Scholar
  45. 45.
    Binghley PJ, Matthews DR, Williams AJ, Botazzo GF, Gale EA. Loss of regular oscillatory insulin secretion in islet cell antibody positive non-diabetic subjects. Diabetologia 1992; 35 (1): 32–38.CrossRefGoogle Scholar
  46. 46.
    Kindmark H, Kohler M, Arkhammar P, Efendic S, Larsson O, Linder S, Nilsson T, Berggren PO. Oscillations in cytoplasmic free calcium concentration in human pancreatic islets from subjects with normal and impaired glucose tolerance. Diabetologia 1994; 37 (11): 1121–1131.PubMedCrossRefGoogle Scholar
  47. 47.
    Butler PC, Eberhardt NL, O’Brien TD. Islet amyloid polypeptide and insulin secretion. In: Molecular Biology of Diabetes, part I. Draznin B, ed. Totowa, NJ: Humana Press, 381–398, 1994.Google Scholar
  48. 48.
    Jaspan JB, Green AJ. The neuropathies of diabetes. In: Endocrinology. Degroot LJ, ed. Philadelphia: Saunders, pp. 1536–1568, 1995.Google Scholar
  49. 49.
    Greenwood RH, Mahler RF, Hales CN. Improvement in insulin secretion in diabetes after diazoxide. Lancet 1976; 1(7957): 444 447. Google Scholar
  50. 50.
    Freidenberg GR, Reichart D, Olefsky JM, Henry RR. Reversibility of defective adipocyte insulin receptor kinase activity in non-insulin-dependent diabetes mellitus. Effect of weight loss. J Clin Invest 1988; 82 (4): 1398–1406.PubMedCrossRefGoogle Scholar
  51. 51.
    Devlin JT. Effects of exercise on insulin sensitivity in humans. Diabetes Care 1992; 15 (11): 1690–1693.PubMedCrossRefGoogle Scholar
  52. 52.
    Lind L, Pollare T, Berne C, Lithell H. Long term metabolic effects of antihypertensive drugs. Am Heart J 1994; 128: 1177–1183.PubMedCrossRefGoogle Scholar
  53. 53.
    Turner RC, Cull CA, Stratton IM, Manley SE, Kohner EM, Matthews DR, Neil HAW, Levy JC, Holman RR. UK prospective diabetes study 16-overview of 6 years therapy of type II diabetes-a progressive disease. Diabetes 1995; 44 (11): 1249–1258.CrossRefGoogle Scholar
  54. 54.
    Matthews DR, Naylor BA, Jones RG, Ward GM, Turner RC. Pulsatile insulin has greater hypoglycemic effect than continuous delivery. Diabetes 1983; 32: 617–621.PubMedCrossRefGoogle Scholar
  55. 55.
    Polonsky KS, Given BD, Van Cauter E. Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J Clin Invest 1988; 81: 442–448.PubMedCrossRefGoogle Scholar
  56. 56.
    Sturis J, Scheen AJ, Leproult R, Polonsky KS, van Cauter E. 24-Hour glucose profiles during continuous or oscillatory insulin infusion. Demonstration of the functional significance of ultradian insulin oscillations. J Clin Invest 1995; 95 (4): 1464–1471.PubMedCrossRefGoogle Scholar
  57. 57.
    O’Meara NM, Sturis J, Van Cauter E, Polonsky KS. Lack of control by glucose of ultradian insulin secretory oscillations in impaired glucose tolerance and in non-insulin dependent diabetes mellitus. J Clin Invest 1993; 92: 262–271.PubMedCrossRefGoogle Scholar
  58. 58.
    Frogue PH, Vaxillare M, Sun F, Velho G, Zouali H, Butel MO, Lesage S, Vionnet N, Clement K, Fougerousse F, Tanizawa Y, Weissenbach J, Beckmann JS, Lathrop GM, Passa PH, Permutt MA, Cohen D. Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulindependent diabetes mellitus. Nature 1992; 356: 162–164.CrossRefGoogle Scholar
  59. 59.
    Efrat S, Leiser M, Wu YJ, Fusco-DeMane D, Emran OA, Surana M, Jetton TL, Magnuson MA, Weir G, Fleischer N. Ribozyme-mediate attenuation of pancreatic beta-cell glucokinase expression in transgenic mice results in impaired glucose-induced insulin secretion. Proc Natl Acad Sci USA 1994; 91 (6): 2051–2055.PubMedCrossRefGoogle Scholar
  60. 60.
    Hattersley AT, Saker PJ, Cook JT, Stratton IM, Patel P, Permutt MA, Turner RC, Wainscoat JS. Microsatellite polymorphisms at the glucokinase locus: a population association study in Caucasian type 2 diabetic subjects. Diabetic Med 1993; 10 (8): 694–698.PubMedCrossRefGoogle Scholar
  61. 61.
    Orci L, Ravazzola M, Baetens D, Inman L, Amherdt M, Paterson RG, Newgard CB, Johnson JH, Unger RH. Evidence that down-regulation of beta-cell glucose transporters in non-insulindependent diabetes may be the cause of diabetic hyperglycemia. Proc Natl Acad Sci USA 1990; 87 (24): 9953–9957.PubMedCrossRefGoogle Scholar
  62. 62.
    De Vos A, Heimberg H, Quartier E, Huypens P, Bouwens L, Pipeleers D, Schuit F. Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression. J. Clin Invest 1995; 96: 2489–2495.PubMedCrossRefGoogle Scholar
  63. 63.
    Malaisse WJ. The beta cell in NIDDM: giving light to the blind. Diabetologia 1994; 37 (Suppl 2): S36–42.PubMedCrossRefGoogle Scholar
  64. 64.
    Warnotte C, Gilon P, Nenquin M, Henquin J-C. Mechanisms of the stimulation of insulin release by saturated fatty acids, a study of palmitate effects in mouse 13-cells. Diabetes 1994; 43: 703–711.PubMedCrossRefGoogle Scholar
  65. 65.
    Zhou YP, Grill V. Long term exposure to fatty acids and ketones inhibits B-cell functions in human pancreatic islets of Langerhans. J Clin Endocrinol Metab 1995; 80 (5): 1584–1590.PubMedCrossRefGoogle Scholar
  66. 66.
    Opara EC, Garfinkel M, Hubbard VS, Burch WM, Akwari 0E. Effect of fatty acids on insulin release: role of chain length and degree of unsaturation. Am J Physiol 1994; 266 (Endocrinol Metab 29): E635–639.PubMedGoogle Scholar
  67. 67.
    Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty acid cycle, its role in insulin sensitivity and the metabolic disturbances in diabetes mellitus. Lancet 1963; 1: 785–789.PubMedCrossRefGoogle Scholar
  68. 68.
    Fraze E, Donner CC, Swislocki AL, Chiou YA, Chen YD, Reaven GM. Ambient plasma free fatty acid concentrations in noninsulin-dependent diabetes mellitus: evidence for insulin resistance. J Clin Endocrinol Metab 1985; 61: 807–811.PubMedCrossRefGoogle Scholar
  69. 69.
    Warren S, LeCompte PM. The pancreas in diabetes mellitus. In: The Pathology of Diabetes Mellitus. Philadelphia: Lea and Febiger, pp. 31–75, 1952.Google Scholar
  70. 70.
    O’Brien TD, Butler PC, Westermark P, Johnson KH. Islet amyloid polypeptide: a review of its biology and potential roles in the pathogenesis of NIDDM. Vet Pathol 1993; 30: 317–332.PubMedCrossRefGoogle Scholar
  71. 71.
    Clark A, Holman RR, Matthews DR, Holkaday TDR, Turner RC. Non-uniform distribution of islet amyloid in the pancreas of maturity onset diabetic patients. Diabetologia 1984; 27: 527–528.PubMedCrossRefGoogle Scholar
  72. 72.
    Maloy AL, Longnecker DS, Greenberg ER. The relation of islet amyloid to the clinical type of diabetes. Hum Pathol 1981; 12: 917–922.PubMedCrossRefGoogle Scholar
  73. 73.
    Howard CF. Longitudinal studies on the developmental of diabetes in individual Macaca nigra. Diabetologia 1985; 29: 301–306.CrossRefGoogle Scholar
  74. 74.
    de Koning EJP, Bodkin NL, Hansen BC, Clark A. Diabetes mellitus in Macac mulatta monkeys is characterized by islet amyloidosis and reduction in beta-cell population. Diabetologia 1993; 36: 378–384.PubMedCrossRefGoogle Scholar
  75. 75.
    Westermark P. Fine structure of the islets of Langerhans in insular amyloidosis. virchows Arch A (Pathol Anat) 1973; 359: 1–18.CrossRefGoogle Scholar
  76. 76.
    Clark A, Cooper GJ, Lewis CE, Morris JF, Willis AC, Reid KB, Turner RC. Islet amyloid formed from diabetes-associated peptide may be pathogenic in type-2 diabetes. Lancet 1987; 2 (855): 231–234.PubMedCrossRefGoogle Scholar
  77. 77.
    O’Brien TD, Butler AE, Johnson KH, Roche PC, Butler PC. Islet amyloid polypeptide (TAPP) in human insulinomas: evidence for intracellular anyloidogenesis. Diabetes 1993; 43: 329–336.CrossRefGoogle Scholar
  78. 78.
    Couce M, Kane LA, O’Brien TD, Charlesworth J, Soeller W, McNeish J, Kreutter D, Roche P, Butler PC. Treatment with growth hormone and dexamethasone in mice transgenic for human islet amyloid polypeptide causes islet amyloidosis and beta-cell dysfunction. Diabetes 1996; 45: 1094–1101.PubMedCrossRefGoogle Scholar
  79. 79.
    Eanes ED, Glenner GG. X-ray diffraction studies of amyloid filaments. Histochem Cytochem 1986; 16: 673–677.CrossRefGoogle Scholar
  80. 80.
    Westermark P, Wernstedt C, Wilander E, Hayden DW, O’Brien TD, Johnson KH. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci USA 1987; 84: 3881.PubMedCrossRefGoogle Scholar
  81. 81.
    Cooper GJS, Willis AC, Clark A, Turner RC, Sim RB, Reid KBM. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci USA 1987; 84: 8628.PubMedCrossRefGoogle Scholar
  82. 82.
    Johnson KH, O’Brien TD, Hayden DW, Jordan K, Ghobrial HKG, Mahoney WC, Westermark P. Immunolocalization of islet amyloid polypeptide (TAPP) in pancreatic 13-cells using peroxidase antiperoxidase (PAP) and protein A-gold techniques. Am J Pathol 1988; 130: 1–8.PubMedGoogle Scholar
  83. 83.
    Nishi M, Chan SJ, Nagamatus S, Bell GI, Steiner DF. Conservation of the sequence of islet amyloid polypeptide in five mammals is consistent with its putative role as an islet hormone. Proc Natl Acad Sci USA 1989; 86 (15): 5738–5742.PubMedCrossRefGoogle Scholar
  84. 84.
    Westermark P, Engstrom U, Johnson KH, Westermark GT, Betsholtz C. Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc Natl Acad Sci USA 1990; 87: 5036–5040.PubMedCrossRefGoogle Scholar
  85. 85.
    Nishi M, Bell GI, Steiner DF. Islet amyloid polypeptide (amylin): no evidence of an abnormal precursor sequence in 25 type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1990; 33: 628–630.PubMedCrossRefGoogle Scholar
  86. 86.
    Lorenzo A, Razzaboni R, Weir GC, Yankner BA. Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature 1994; 368: 756–760.PubMedCrossRefGoogle Scholar
  87. 87.
    O’Brien TD, Butler PC, Kreutter DK, Kane LA, Eberhardt NL. Human islet amyloid polypeptide expression in cos-1 cells a model of intracellular amyloidogenesis. Am J Pathol 1995; 147: 609–616.PubMedGoogle Scholar
  88. 88.
    Sanke T, Hanabusa T, Nakano Y, Oki C, Okai K, Nishimura S, Kondo M, Nanjo K Plasma islet amyloid polypeptide (amylin) levels and their responses to oral glucose in type 2 (non-insulindependent) diabetic patients. Diabetologia 1991; 34: 129–132.PubMedCrossRefGoogle Scholar
  89. 89.
    Leighton B, Cooper GJS. Pancreatic amylin and calcitonin gene-related peptide cause resistance to insulin skeletal in in vitro. Nature 1988; 335: 632–635.CrossRefGoogle Scholar
  90. 90.
    Ohsawa H, Kanatsuke A, Yamaguchi T, Makino H, Yoshida S. Islet amyloid polypeptide inhibits glucose-stimulated insulin secretion in isolated rat pancreatic islets. Biochem Biophys Res Commun 1989; 160: 961–967.PubMedCrossRefGoogle Scholar
  91. 91.
    Silvestre RA, Peiro E, Degano P, Miralles P, Marco J. Inhibitory effect of rat amylin on the insulin responses to glucose and arginine in the perfused rat pancreas. Regul Pept 1990; 31: 23–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Yogish C. Kudva
  • Peter C. Butler

There are no affiliations available

Personalised recommendations