Effects of Obesity on Lipid Metabolism

  • Ahmed H. Kissebah
  • Glenn R. Krakower
Part of the Contemporary Biomedicine book series (CB, volume 15)


Obesity is a complex, heterogeneous disorder whose etiologic mechanisms are influenced by genetic, environmental, and neuroendocrine factors (1,2). Not only is obesity associated with excess body fat, but the biology of obesity is also influenced by size, location, and metabolism of the adipose tissue, as well as hormonal and neuroendocrine factors, all interacting to contribute to the associated health risks. Cardiovascular outcome is the sum total of multiple components, one of which is disturbances in lipid metabolism. Although the mechanisms behind the biology of these associations have been poorly understood, we now have the tools to study the underlying factors, in terms of both the genetic and neuroendocrinologic influences. This chapter describes the health risks associated with obesity and especially with abdominal/visceral obesity, with particular regard to effects on serum lipids and lipoproteins, and their relationship to insulin resistance and progression toward noninsulin-dependent diabetes mellitus (NIDDM).


Free Fatty Acid Cholesteryl Ester Transfer Protein Androgenic Activity Free Fatty Acid Release Body Obesity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kissebah AH, Peiris AN. Biology of regional body fat distribution: relationship to non-insulindependent diabetes mellitus. Diabetes Metab Rev 1989; 5: 83–109.PubMedCrossRefGoogle Scholar
  2. 2.
    Kissebah AH, Krakower GR. Regional adiposity and morbidity. Physiol Rev 1994; 74: 761–811.PubMedGoogle Scholar
  3. 3.
    Kissebah AH, Schectman G. Hormones and lipoprotein metabolism. Baillière’s Clin Endocrinol Metab 1987; 1: 699–725.PubMedCrossRefGoogle Scholar
  4. 4.
    Kissebah AH, Freedman DS, Peiris AN. Health risks of obesity. Med Clin North Am 1989; 73: 111–138.PubMedGoogle Scholar
  5. 5.
    Lapidus L, Bengtsson C, Larsson B, Pennert K, Rybo E, Sjöström L. Distribution of adipose tissue and risk of cardiovascular disease and death: a 12-year follow-up of participants in the population study of women in Gothenburg, Sweden. Br Med J 1984; 289; 1257–1261.CrossRefGoogle Scholar
  6. 6.
    Hartz AJ, Rupley DC, Kalkhoff RK, Rimm AA. Relationship of obesity to diabetes: influences of obesity level and body-fat distribution. Prey Med 1983; 12: 351–357.CrossRefGoogle Scholar
  7. 7.
    Morris RD, Rimm AA. Association of waist to hip ratio and family history with the prevalence of NIDDM among 25,272 adult, white females. Am J Public Health 1991; 81: 507–509.PubMedCrossRefGoogle Scholar
  8. 8.
    Kissebah A, Vydelingum N, Murray R, Evans D, Hartz A, Kalkhoff RK, Adams PW. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab 1982; 54: 254–260.PubMedCrossRefGoogle Scholar
  9. 9.
    Evans DJ, Hoffmann RG, Kalkhoff RK, Kissebah AH. Relationship of body fat topography to insulin sensitivity and metabolic profiles in premenopausal women. Metabolism 1984; 33: 68–75.PubMedCrossRefGoogle Scholar
  10. 10.
    Peiris AN, Hennes MI, Evans DJ, Wilson CR, Lee MB, Kissebah AH. Relationship of anthropometric measurements of body fat distribution to metabolic profile in premenopausal women. Acta Med Scand 1988; Supp1723:179–188.Google Scholar
  11. 11.
    Peiris AN, Sothmann MS, Hoffmann RG, Hennes MI, Wilson CR, Gustafson AB, Kissebah A. Adiposity, fat distribution, and cardiovascular risk. Ann Intern Med 1989; 110: 867–872.PubMedGoogle Scholar
  12. 12.
    Chute CG, Baron JA, Plymate SR, Kiel DP, Pavia AT, Lozner EC, O’Keefe T, MacDondald GJ. Sex hormones and coronary artery disease. Am J Med 1987; 83: 853–859.PubMedCrossRefGoogle Scholar
  13. 13.
    Freedman DS, Jacobsen SJ, Barboriak JJ, Sobocinski KA, Anderson AJ, Kissebah AH, Sasse EA, Gruchow HVV. Body fat distribution and male/female differences in lipids and lipoproteins. Circulation 1990; 81: 1498–1506.PubMedCrossRefGoogle Scholar
  14. 14.
    Anderson AJ, Sobocinski KA, Freedman DS, Barboriak JJ, Rimm AA, Gruchow HW. Body-fat distribution, plasma lipids, and lipoproteins. Arteriosclerosis 1988; 8: 88–94.PubMedCrossRefGoogle Scholar
  15. 15.
    Kissebah AH. Low density lipoprotein metabolism in non-insulin-dependent diabetes mellitus. Diabetes Metab Rev 1987; 3: 619–651.PubMedCrossRefGoogle Scholar
  16. 16.
    Fujioka S, Matsuzawa Y, Tokunaga K, Kawamoto T, Kobatake T, Keno Y, Kotani K, Yoshida S, Tarui S. Improvement of glucose and lipid metabolism associated with selective reduction of intra-abdominal visceral fat in premenopausal women with visceral obesity. Int J Obesity 1991; 15: 853–859.Google Scholar
  17. 17.
    Shuman WP, Morris LLN, Leonetti DL, Wahl PW, Moceri VM, Moss AA, Fujimoto WY. Abnormal body fat distribution detected by computed tomography in diabetic men. Invest Radiol 1986; 21: 483–487.PubMedCrossRefGoogle Scholar
  18. 18.
    Krotkiewski M, Björntorp P, Sjöström L, Smith U. Impact of obesity on metabolism in men and women: importance of regional adipose tissue distribution. J Clin Invest 1983; 72: 1150–1162.PubMedCrossRefGoogle Scholar
  19. 19.
    Stern MP, Haffner SM. Body fat distribution and hyperinsulinemia as risk factors for diabetes and cardiovascular disease. Arteriosclerosis 1986; 6: 123–130.PubMedCrossRefGoogle Scholar
  20. 20.
    Peeples LH, Carpenter JW, Israel RG, Barakat HA. Alterations in low-density lipoproteins in subjects with abdominal adiposity. Metabolism 1989; 38: 1029–1036.PubMedCrossRefGoogle Scholar
  21. 21.
    Terry RB, Wood PD, Haskell WL, Stefanick ML, Krauss RM. Regional adiposity patterns in relation to lipids, lipoprotein cholesterol, and lipoprotein subfraction mass in man. J Clin Endocrinol Metab 1989; 68: 191–199.PubMedCrossRefGoogle Scholar
  22. 22.
    Dixon JL, Furukawa S, Ginsberg HN. Oleate stimulates secretion of apolipoprotein B-containing lipoproteins from HepG2 cells by inhibiting early intracellular degradation of apolipoprotein B. J Biol Chem 1991; 266: 5080–5086.Google Scholar
  23. 23.
    Fievet C, Fruchart JC. HDL heterogeneity and coronary heart disease. Diabetes Metab Rev 1991; 7: 155–162.PubMedCrossRefGoogle Scholar
  24. 24.
    Haffner SM, Fong D, Hazuda HP, Pugh JA, Patterson JK. Hyperinsulinemia, upper body adiposity and cardiovascular risk factors in nondiabetics. Metabolism 1988; 37: 333–345.Google Scholar
  25. 25.
    Arai T, Yamashita S, Hirano K-i, Sakai N, Kotani K, Fujioka S, Nozaki S, Keno Y, Yamane M, Shinohara E, Waliul Islam AHM, Ishigami M, Nakamura T, Kameda-Takemura K, Tokunaga M, Matsuzawa Y. Increased plasma cholesteryl ester transfer protein in obese subjects. A possible mechanism for the reduction of serum HDL cholesterol levels in obesity. Arteriosclerosis Thromb 1994; 14: 1129–1136.CrossRefGoogle Scholar
  26. 26.
    Pouliot M-C, Després J-P, Moorjani S, Lupien PJ, Tremblay A, Bouchard C. Apolipoprotein E polymorphism alters the association between body fatness and plasma lipoproteins in women. J Lipid Res 1990; 31: 1023–1029.Google Scholar
  27. 27.
    Srinivasan R, Ehnholm C, Wattigney WA, Berenson GS. Relationship between obesity and serum lipoproteins in children with different apolipoprotein E phenotypes: the Bogalusa Heart Study. Metabolism 1994; 43: 470–476.Google Scholar
  28. 28.
    Austin MA, Horowitz H, Wijsman E, Krauss RM, Brunzell J. Bimodality of plasma apolipoprotein B levels in familial combined hyperlipidemia. Atherosclerosis 1992; 92: 67–77.PubMedCrossRefGoogle Scholar
  29. 29.
    Austin MA. Genetic epidemiology of low-density lipoprotein subclass phenotypes. Ann Med 1991; 24: 477–481.CrossRefGoogle Scholar
  30. 30.
    Rajman I, Maxwell S, Cramb R, Kendall M. Particle size: the key to the atherogenic lipoprotein? Quart J Med 1994; 87: 709–720.Google Scholar
  31. 31.
    Krauss RM. Dense low density lipoproteins and coronary artery disease. Am J Cardiol 1995; 75: 53B - 57B.PubMedCrossRefGoogle Scholar
  32. 32.
    Sztalryd C, Azhar S, Reaven GM. Differences in insulin action as a function of original anatomical site of newly differentiated adipocytes obtained in primary culture. J Clin Invest 1991; 88: 1629–1635.PubMedCrossRefGoogle Scholar
  33. 33.
    Newby FD, Wilson LK, Thacker SV, DiGirolamo M. Adipoctye lactate production remains elevated during refeeding after fasting. Am J Physiol 1990; 259: E865 - E871.PubMedGoogle Scholar
  34. 34.
    Lovejoy F, Newby D, Gebhart SSP, DiGirolamo M. Insulin resistance in obesity is associated with elevated basal lactate levels and diminished lactate appearance following intravenous glucose and insulin. Metabolism 1992; 41: 22–26.PubMedCrossRefGoogle Scholar
  35. 35.
    DiGirolamo M, Newby FD, Lovejoy J. Lactate production in adipose tissue: a regulated function with extra-adipose implications. FASEB J 1992; 6: 2405–2412.PubMedGoogle Scholar
  36. 36.
    Rebuffé-Scrive M, Andersson B, Olbe L, Björntorp P. Metabolism of adipose tissue in intra-abdominal depots of nonobese men and women. Metabolism 1989; 38: 453–458.PubMedCrossRefGoogle Scholar
  37. 37.
    LaFontan M, Dang-Tran L, Berlan M. Alpha-adrenergic antilipolytic effect of adrenaline in human fat cells of the thigh: comparison with adrenaline responsiveness of different fat deposits. Eur J Clin Invest 1979; 9: 261–266.PubMedCrossRefGoogle Scholar
  38. 38.
    Rebuffé-Scrive M, Andersson B, Olbe L, Björntorp P. Metabolism of adipose tissue in intraabdominal depots in severely obese men and women. Metabolism 1990; 39: 1021–1025.PubMedCrossRefGoogle Scholar
  39. 39.
    Lönnqvist F, Thorne A, Nilsell K, Hoffstedt J, Arner P. A pathogenic role of visceral fat 133-adrenoceptors in obesity. J Clin Invest 1995; 95: 1109–1116.PubMedCrossRefGoogle Scholar
  40. 40.
    Rebuffé-Scrive M, Lönnroth P, Mârin P, Wesslau C, Björntorp P, Smith U. Regional adipose tissue metabolism in men and postmenopausal women. Int J Obes 1987; 11: 347–355.PubMedGoogle Scholar
  41. 41.
    Bolinder J, Kager L. Östman J, Arner P. Differences at the receptor and post-receptor levels between human omental and subcutaneous adipose tissue in the action of insulin on lipolysis. Diabetes 1983; 32: 117–123.PubMedCrossRefGoogle Scholar
  42. 42.
    Rebuffé-Scrive M. Neuroregulation of adipose tissue: molecular and hormonal mechanisms. Int J Obes 1991; 15 Suppl 2: 83–86.Google Scholar
  43. 43.
    Evans DJ, Hoffmann RG, Kalkhoff RK, Kissebah AH. Relationship of androgenic activity to body fat topography, fat cell morphology, and metabolic aberrations in premenopausal women. J Clin Endocrinol Metab 1983; 57: 304–310.PubMedCrossRefGoogle Scholar
  44. 44.
    Kissebah AH, Evans DJ, Peiris A, Wilson CR. Endocrine characteristics in regional obesities: role of sex steroids. In Metabolic Complications of Humans Obesities, Vague J, Björntorp P, Guy-Grand B, Rebuffé-Scrive M, Vague P, eds. Amsterdam: Elsevier, pp. 115–130, 1985.Google Scholar
  45. 45.
    Wade GN, Gray JM. Theoretical review. Gonadal effects on food intake and adiposity: a metabolic hypothesis. Physiol Behav 1979; 22: 583–593.PubMedCrossRefGoogle Scholar
  46. 46.
    Crandall DL, DiGirolamo M. Hemodynamic and metabolic correlates in adipose tissue: pathophysiologic considerations. FASEB J 1990; 4: 141–147.Google Scholar
  47. 47.
    Bray GA, Inoue S, Nishizawa Y. Hypothalamic obesity: the autonomic hypothesis and the lateral hypothalamus. Diabetologia 1981; 20: 366–377.PubMedCrossRefGoogle Scholar
  48. 48.
    Havel RJ, Goldfien A. The role of the sympathetic nervous system in the metabolism of free fatty acids. J Lipid Res 1959; 1: 102–108.Google Scholar
  49. 49.
    Hennes MMI, O’Shaughnessy IM, Kelly TM, LaBelle P, Egan BM, Kissebah AH. Insulin-resistant lipolysis in abdominally-obese hypertensives. Role of the renin-angiotensin system. Hypertension 1996; 28: 120–126.PubMedCrossRefGoogle Scholar
  50. 50.
    O’Shaughnessy IM, Myers TJ, Stepniakowski K, Nazzaro P, Kelly TM, Hoffmann RG, Egan BM, Kissebah AH. Glucose metabolism in abdominally obese hypertensive and normotensive subjects. Hypertension 1995; 26: 186–192.PubMedCrossRefGoogle Scholar
  51. 51.
    Egan BM, Stepniakowski K, Goodfriend TL. Renin and aldosterone are higher and the hyperinsulinemic effects of salt restriction greater in subjects with risk factor clustering. Am J Hypertension 1994; 7: 886–893.Google Scholar
  52. 52.
    Kissebah AH, Peiris A, Evans DJ. Mechanisms associating body fat distribution with the abnormal metabolic profile in obesity. In Recent Advances in Obesity Research V. Berry EM, Blondheim SH, Eliahou HE, Shafrir E, eds. London: John Libbey, pp. 54–59, 1987.Google Scholar
  53. 53.
    Randle P, Garland P, Hales C, Newsholme E. The glucose-fatty acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; is 785–789.Google Scholar
  54. 54.
    Hennes MMI, McCune SA, Shrago E, Kissebah AH. Synergistic effects of male sex and obesity on hepatic insulin dynamics in SHR/Mcc-cp rat. Diabetes 1990; 39: 789–795.PubMedCrossRefGoogle Scholar
  55. 55.
    Svedberg J, Strömblad G, Wirth A, Smith U, Björntorp P. Fatty acids in the portal vein of the rat regulate hepatic insulin clearance. J Clin Invest 1991; 88: 2054–2058.PubMedCrossRefGoogle Scholar
  56. 56.
    Hennes MMI, Shrago E, Kissebah AH. Receptor and postreceptor effects of free fatty acids (FFA) on hepatocyte insulin dynamics. Int J Obes 1990; 14: 831–841.PubMedGoogle Scholar
  57. 57.
    Hennes MMI, Shrago E, Kissebah AH. Divergent effects of free fatty acids (FFA) oxidation on hepatocyte insulin processing. In Progress in Obesity Research. Oomura Y, Tarui S, Inoue S, Shimazu T, eds. London: John Libbey, pp. 277–284, 1992.Google Scholar
  58. 58.
    Björntorp P. Metabolic implications of body fat distribution. Diabetes Care 1991; 14: 1132–1143.PubMedCrossRefGoogle Scholar
  59. 59.
    Peiris AN, Mueller RA, Struve MF, Smith GA, Kissebah AH. Relationship of androgenic activity to splanchnic insulin metabolism and peripheral glucose utilization in premenopausal women. J Clin Endocrinol Metab 1987; 64: 162–169.PubMedCrossRefGoogle Scholar
  60. 60.
    Krakower GR, Kissebah AH. Pubescence-related changes in hepatocyte insulin dynamics in female rats. Am J Physiol 1989; 256: E780 - E787.PubMedGoogle Scholar
  61. 61.
    Krakower GR, Meier DA, Kissebah AH. Female sex hormones, perinatal, and peripubertal androgenization on hepatocyte insulin dynamics in rats. Am J Physiol 1993; 264: E342 - E347.PubMedGoogle Scholar
  62. 62.
    Tyroler HA. Cholesterol and vascular disease. An overview of the Lipid Research Clinics (LRC) Epidemiologic Studies as background for the LRC Coronary Primary Prevention Trial. Am J Cardiol 1984; 54: 14C - 19C.Google Scholar
  63. 63.
    Furman RH, Alaupovic P, Howard RP. Hormones and lipoproteins. Prog Biochem Pharmacol 1967; 2: 215–249.Google Scholar
  64. 64.
    Gluek CJ, Fallat RW, Scheel D. Effects of estrogenic compounds on triglyceride kinetics. Metabolism 1975; 24: 537–545.CrossRefGoogle Scholar
  65. 65.
    Mondon CE, Reaven GM. Evidence of abnormalities of insulin metabolism in rats with spontaneous hypertension. Metabolism 1988; 37: 303–305.PubMedCrossRefGoogle Scholar
  66. 66.
    Björntorp R. Visceral fat accumulation: the missing link between psychosocial factors and cardiovascular disease? J Intern Med 1991; 230: 195–201.PubMedCrossRefGoogle Scholar
  67. 67.
    Tattersal RB, Pyke DA. Diabetes in identical twins. Lancet 1972; ii: 1120–1125.Google Scholar
  68. 68.
    Fujimoto WY, Leonetti DL, Newell-Morris L, Shuman WP, Wahl PW. Relationship of absence of presence of a family history of diabetes to body weight and body fat distribution in type 2 diabetes. Int J Obes 1991; 15: 111–120.PubMedGoogle Scholar
  69. 69.
    Poller W, Schatz H. Molecular genetic analysis of NIDDM. Exp Clin Endocrinol 1993; 101: 58–68.PubMedCrossRefGoogle Scholar
  70. 70.
    Leiter EH. The genetics of diabetes susceptibility in mice. FASEB 11989; 3: 2231–2241.Google Scholar
  71. 71.
    Kava RA, West DB, Lukasik VA, Greenwood MRC. Sexual dimorphism of hyperglycemia and glucose tolerance in Wistar fatty rats. Diabetes 1989; 38: 159–163.PubMedCrossRefGoogle Scholar
  72. 72.
    LaBelle M, Austin MA, Rubin E, Krauss RM. Linkage analysis of low-density lipoprotein subclass phenotypes and the apolipoprotein B gene. Genet Epidemiol 1991; 8: 269–275.PubMedCrossRefGoogle Scholar
  73. 73.
    Nishina PM, Johnson JP, Naggert KJ, Krauss RM. Linkage of atherogenic lipoprotein phenotype to the low density lipoprotein receptor locus on the short arm of chromosome 19. Proc Natl Acad Sci USA 1992; 89: 708–712.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Ahmed H. Kissebah
  • Glenn R. Krakower

There are no affiliations available

Personalised recommendations