Glucose Toxicity and Insulin Resistance in NIDDM

  • Hannele Yki-Järvinen
Part of the Contemporary Biomedicine book series (CB, volume 15)


If insulin sensitivity is measured in a large group of subjects, classified according their glucose tolerance, patients with noninsulin-dependent diabetes mellitus (NIDDM) are, on the average, more insulin-resistant than those with normal and impaired glucose tolerance (Fig. 1). This difference remains true even after adjusting for such factors as age, gender, physical fitness, body fat, and fat distribution (1). Similarly, in insulin-treated patients with IDDM, insulin sensitivity is, on the average, impaired and cannot be attributed to known causes of variation in insulin sensitivity in normal subjects (2).


Insulin Resistance Insulin Sensitivity Glycemic Control Glucose Uptake Glycogen Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lillioja S, Mott DM, Howard BV, Bennett PH, Yki-Järvinen H, Freymond BL, Nyomba F, Zurlo B, Swinburn B, Bogardus C. Impaired glucose tolerance as a disorder of insulin action: longitudinal and cross-sectional studies in Pima indians. New Engl J Med 1988; 318: 1217–1225.PubMedCrossRefGoogle Scholar
  2. 2.
    Yki-Järvinen H, Koivisto VA. Natural course of insulin resistance in type 1 diabetes. New Engl J Med 1986; 315: 224–230.PubMedCrossRefGoogle Scholar
  3. 3.
    Yki-Järvinen H, Helve E, Loivisto VA. Hyperglycemia decreases glucose uptake in type 1 diabetes. Diabetes 1987; 36: 892–896.PubMedCrossRefGoogle Scholar
  4. 4.
    Rossetti L, Smith D, Shculman GI, Papachristou D, DeFronzo RA. Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest 1987; 79: 1510–1515.PubMedCrossRefGoogle Scholar
  5. 5.
    Rossetti L, Shulman G, Zawalich W, DeFronzo RA. Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats. J Clin Invest 1987; 80: 1037–1044.PubMedCrossRefGoogle Scholar
  6. 6.
    Yki-Järvinen H, Taskinen M-R, Kiviluoto T, Hilden H, Helve E, Koivisto VA, Nikkila E. Site of insulin resistance in type 1 diabetes: insulin-mediated glucose disposal in vivo in relation to insulin binding and action in adipocytes in vitro. J Clin Endocrinol Metab 1984; 59: 1183–1192.PubMedCrossRefGoogle Scholar
  7. 7.
    Yki-Järvinen H, Koivisto VA. Continuous subcutaneous insulin infusion therapy decreases insulin resistance in type 1 diabetes. J Clin Endocrinol Metab 1984; 58: 659–666.PubMedCrossRefGoogle Scholar
  8. 8.
    Yki-Järvinen H, Koivisto VA. Insulin sensitivity in newly diagnosed type I diabetes following ketoacidosis and after a 3 month insulin therapy. J Clin Endocrinol Metab 1984; 59: 371–378.PubMedCrossRefGoogle Scholar
  9. 9.
    Yki-Järvinen H, Sahlin K, Ren JM, Koivisto VA. Localization of the rate-limiting defect for glucose disposal in skeletal muscle of insulin-resistant type 1 diabetic patients. Diabetes 1990; 39: 157–167.PubMedCrossRefGoogle Scholar
  10. 10.
    DeFronzo RA, Hendler R, Simonson D. Insulin resistance is a prominent feature of insulin-dependent diabetes. Diabetes 1982; 31: 795–801.PubMedGoogle Scholar
  11. 11.
    DeFronzo RA, Simonson D, Ferrannini E. Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1982; 23: 313–319.PubMedCrossRefGoogle Scholar
  12. 12.
    DeFronzo RA, Gunnarson R, Bjorkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest 1985; 76: 149–155.PubMedCrossRefGoogle Scholar
  13. 13.
    Nuutila P, Knuuti J, Ruotsalainen U, Koivisto VA, Eronen E, Teräs M, Bergman J, Haaparanta M, Voipio-Pulkki L, Viikari J, Rönnemaa T, Wegelius U, Yki-Järvinen H. Insulin resistance is localized to skeletal muscle but not heart muscle in type 1 diabetes. Am J Physiol 1993; 264: E756 - E762.PubMedGoogle Scholar
  14. 14.
    Rizza RA, Gerich JE, Haymond MW, Westland RE, Hall LD, Clemens AH, Service FJ. Control of blood sugar in insulin-dependent diabetes: comparison of an artificial endocrine pancreas, continuous subcutaneous insulin infusion, and intensified conventional insulin therapy. New Engl J Med 1980; 303: 1313–1318.PubMedCrossRefGoogle Scholar
  15. 15.
    Arslanian S, Heil BV, Kalhan SC. Hepatic insulin action in adolescents with insulin-dependent diabetes mellitus: relationship with long-term glycemic control. Metabolism 1993; 42: 283–290.PubMedCrossRefGoogle Scholar
  16. 16.
    DeFronzo RA. Improved insulin sensitivity in patients with type 1 diabetes mellitus after CSII. Diabetes 1985; 34, Supp13: 80–86.Google Scholar
  17. 17.
    Lager I, Lonnroth P, Von Shenck H, Smith U. Reversal of insulin resistance in type 1 diabetes after treatment with continuous subcutaneous insulin infusion. Brit Med J 1983; 287: 1001–1004.CrossRefGoogle Scholar
  18. 18.
    Vuorinen-Markkola H, Koivisto VA, Yki-Järvinen H. Mechanisms of hyperglycemia-induced insulin resistance in whole body and skeletal muscle of type 1 diabetic patients. Diabetes 1992; 41: 571–580.PubMedCrossRefGoogle Scholar
  19. 19.
    Fowelin J, Attvall S, von Schenk H, Bengtsson B-A, Smith U, Lager I. Effect of prolonged hyperglycemia on growth hormone levels and insulin sensitivity in insulin-dependent diabetes mellitus. Metabolism 1993; 42: 387–394.PubMedCrossRefGoogle Scholar
  20. 20.
    Rossetti L, Giaccari A, DeFronzo RA. Glucose toxicity. Diabetes Care 1990; 13: 610–630.PubMedCrossRefGoogle Scholar
  21. 21.
    Yki-Järvinen H. Acute and chronic effects of hyperglycemia on glucose metabolism. Diabetologia 1990; 33: 579–585.PubMedCrossRefGoogle Scholar
  22. 22.
    Yki-Järvinen H. Glucose toxicity. Endocr Rev 1992; 13: 415–431.PubMedGoogle Scholar
  23. 23.
    Bell PM, Firth RG, Rizza RA. Effects of hyperglycemia on glucose production and utilization in humans. Measurement with [2–3H]-, [33H]-, and [6–3H]glucose. Diabetes 1986; 35: 642–648.PubMedCrossRefGoogle Scholar
  24. 24.
    Yki-Järvinen H, Young AA, Lamkin C, Foley JE. Kinetics of glucose disposal in whole body and across the forearm in man. J Clin Invest 1987; 79: 1713–1719.PubMedCrossRefGoogle Scholar
  25. 25.
    The Diabetes Control and Complications Trial research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New Engl J Med 1993; 329: 977–986.CrossRefGoogle Scholar
  26. 26.
    Kuusisto J, Mykkänen L, Pyörälä K, Laakso M. NIDDM and its metabolic control predict coronary heart disease in elderly subjects. Diabetes 1995; 43: 960–967.CrossRefGoogle Scholar
  27. 27.
    Nuutila P, Knuuti MJ, Raitakari M, Ruotsalainen U, Teras M, Voipio-Pulkki L-M, Haaparanta M, Sohn O, Wegelius U, Yki-Jarvinen H. Effect of antilipolysis on heart and skeletal muscle glucose uptake in overnight fasted humans. Am J Physiol 1994; 267: E941 - E946.PubMedGoogle Scholar
  28. 28.
    Rowe GG, Maxwell GM, Catillo CA, Freeman DJ, Crumpton CW. A study in man of cerebral blood flow and cerebral glucose, lactate and pyruvate metabolism before and after eating. J Clin Invest 1959; 38: 2154–2158.PubMedCrossRefGoogle Scholar
  29. 29.
    Gutniak M, Blomqvist G, Widen L, Stone-Elander S, Hamberger B, Grill V. D-[U-11C]glucose uptake and metabolism in the brain of insulin-dependent diabetic subjects. Am J Physiol 1990; 258: E805 - E812.PubMedGoogle Scholar
  30. 30.
    Scheinberg P, Stead EAJ. The cerebral blood flow in male subjects as measured by the nitrous oxide technique. Normal values for blood flow, oxygen utilization, glucose utilization and peripheral resistance, with observations of the effect of tilting and anxiety. J Clin Invest 1949; 28: 1163–1149.PubMedCrossRefGoogle Scholar
  31. 31.
    Wisneski JEG, Neese RA, Gruneke LD, Morris DL, Craig JC. Metabolic fate of extracted glucose in human myocardium. J Clin Invest 1985; 76: 1819–1827.PubMedCrossRefGoogle Scholar
  32. 32.
    Yki-Järvinen H. Fate of glucose in insulin resistant state. In: Diabetes, Obesity and Hyperlipidemia: V. The Plurimetabolic Syndrome. Crepaldi G, Tiengo A, Manzato E, eds. Amsterdam: Elsevier Science Publishers B.V. pp. 75–82, 1993.Google Scholar
  33. 33.
    Yki-Järvinen H, Daniels MC, Virkamäki A, Mäkimattila S, DeFronzo RA, McClain D. Increased glutamine: fructose-6-phosphate amidotransferase activity in skeletal muscle of patients with NIDDM. Diabetes 1996; 45: 302–307.PubMedCrossRefGoogle Scholar
  34. 34.
    Mueckler M. Facilitative glucose transporters. Eur J Biochem 1994; 219: 713–725.PubMedCrossRefGoogle Scholar
  35. 35.
    Printz RL, Koch S, Potter LR, O’Doherty R, Tiesinga JJ, Moritz S, Granner DK. Hexokinase II messenger RNA and gene structure, regulation by insulin, and evolution. J Biol Chem 1993; 268: 5209–5219.PubMedGoogle Scholar
  36. 36.
    Rossetti L, Ciaccari A. Relative contribution of glycogen synthesis and glycolysis to insulin-mediated glucose uptake: a dose-response euglycemic insulin clamp study in normal and diabetic rats. J Clin Invest 1990; 85: 1785–1792.PubMedCrossRefGoogle Scholar
  37. 37.
    Rossetti L, Laughlin MR. Correction of hyperglycemia with vanadate but not with phlorizin, normalizes in vivo glycogen repletion and in vitro glycogen synthase activity in skeletal muscle. J Clin Invest 1989; 84: 892–899.PubMedCrossRefGoogle Scholar
  38. 38.
    Mueckler M. Family of glucose-transporter genes: implications for glucose homeostasis in diabetes. Diabetes 1990; 39: 6–11.PubMedCrossRefGoogle Scholar
  39. 39.
    Klip A, Tsakiridis T, Marette A, Ortiz PA. Regulation of expression of glucose transporters by glucose: a review of studies in vivo and in cell cultures. FASEB J 1994; 8: 43–53.PubMedGoogle Scholar
  40. 40.
    Pedersen O, Bak JF, Andersen PH, Lund S, Moller DE, Flier JS, Kahn BB. Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with NIDDM. Diabetes 1990; 39: 865–870.PubMedCrossRefGoogle Scholar
  41. 41.
    Dimitrakoudis D, Ramlal T, Rastogi S, Vranic M, Klip A. Glycemia regulates the glucose transporter number in the plasma membrane of rat skeletal muscle. Biochem J 1992; 284: 341–348.PubMedGoogle Scholar
  42. 42.
    Gerich JE, Mitrakou A, Kelley D, Mandarin L, Nurjhan N, Reilly J, Jenssen T, Veneman T, Consoli A. Contribution of impaired muscle glucose clearance to reduced postabsorptive systemic glucose clearance in NIDDM. Diabetes 1990; 39: 211–216.PubMedCrossRefGoogle Scholar
  43. 43.
    Yki-Järvinen H, Vuorinen-Markkola H, Koranyi L, Bourey R, Tordjman K, Mueckler M, Permutt AM, Koivisto VA. Defect in insulin action on expression of the muscle/adipose tissue glucose transporter gene in skeletal muscle of type 1 diabetic patients. J Clin Endocrinol Metab 1992; 75: 795–799.PubMedCrossRefGoogle Scholar
  44. 44.
    Zierath JR, Galuska D, Nolte LA, Thörne, Smedegaard Kristensen J, Wallberg-Henriksson H. Effect of glycaemia on glucose transport in isolated skeletal muscle form patients with NIDDM: in vitro reversal of muscular insulin resistance. Diabetologia 1994; 37: 270–277.PubMedCrossRefGoogle Scholar
  45. 45.
    Marshall S, Bacote V, Traxinger RR. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem 1991; 266: 4706–4712.PubMedGoogle Scholar
  46. 46.
    Kornfeld R. Studies on L-glutamine n-fructose 6-phosphate amidotransferase. I. Feedback inhibition by uridine diphosphate-N-acetylglucosamine. J Biol Chem 1967; 242: 3135–3141.PubMedGoogle Scholar
  47. 47.
    Haltiwanger RS, Blomber MA, Hart GW. Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetyl-glucosaminyltransferase. J Biol Chem 1992; 267: 9005–9013.PubMedGoogle Scholar
  48. 48.
    Dong D, Hart GW. Purification and characterization of an O-G1cNAc selective N-acetyl-13-Dglucosaminidase from rat spleen cytosol. J Biol Chem 1994; 269: 19, 231–19, 330.Google Scholar
  49. 49.
    Robinson KA, Sens DA, Buse MG. Pre-exposure to glucosamine induces insulin resistance of glucose transport and glycogen synthesis in isolated rat skeletal muscles. Diabetes 1993; 42: 1333–1346.PubMedCrossRefGoogle Scholar
  50. 50.
    DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 1981; 30: 1000–1007.PubMedGoogle Scholar
  51. 51.
    Rossetti L, Hawkins M, Gindi J, Barzilai, N. In vivo glucosamine infusion induces insulin resistance in normoglycemic but not in hyperglycemic conscious rats. J Clin Invest 1995; 96: 132–140.PubMedCrossRefGoogle Scholar
  52. 52.
    Giaccari A, Morviducci L, Zorretta D, Bonadonna R. Glucosamine infusion induces insulin resistance. Diabetes 1994; 42, Suppl 1: 68A.Google Scholar
  53. 53.
    Crook ED, Zhou J, Daniels M, Neigih JL, McClain DA. Regulation of glycogen synthase by glucose, glucosamine, and glutamine: fructose-6-phosphate amidotransferase. Diabetes 1995; 44: 314–320.PubMedCrossRefGoogle Scholar
  54. 54.
    Crook ED, Daniels MC, Smith TM, McClain DA. Regulation of insulin-stimulated glycogen synthase activity by overexpressin of glutamine: fructose-6-phosphate amidotransferase in rat-1 fibroblasts. Diabetes 1993; 42: 1289–1296.PubMedCrossRefGoogle Scholar
  55. 55.
    Hebert LF, Daniels MC, Zhou J, Crook ED, Turner RL, Simmons ST, Neidigh JL, Zhu J-S, Baron AD, McClain DA. Overexpression of glutamine: fructose-6-phosphate amidotransferase in skeletal muscle of transgenic mice leads to insulin resistance. J Clin Invest 1996; 98: 930–936.PubMedCrossRefGoogle Scholar
  56. 56.
    Buse MG, Robinson K, Marshall B, Mueckler M. The hexosamine synthesis pathway in mice overexpressing GLUT1. Diabetes 1995; 44: 15A.Google Scholar
  57. 57.
    Daniels MC, Ciaraldi TP, Henry RR, Nikoulina S, McClain DA. Glutamine: fructose-6phosphate amidotransferase (GFA) activity in cultured human skeletal muscle cells from control and NIDDM subjects. Diabetes 1995; 44: 16A.Google Scholar
  58. 58.
    Freidenberg GR, Henry RR, Klein HH, Reichart DR, Olef sky JM. Decreased kinase activity of insulin receptors from adipocytes of non-insulin-dependent diabetic subjects. J Clin Invest 1987; 79: 240–250.PubMedCrossRefGoogle Scholar
  59. 59.
    Freidenberg GR, Reichart D, Olefsky JM, Henry RR. Reversibility of defective adipocyte insulin receptor kinase activity in non-insulin-dependent diabetic subjects. J Clin Invest 1988; 82: 1398–1406.PubMedCrossRefGoogle Scholar
  60. 60.
    Comi RJ, Grunberger G, Gorden P. Relationship between insulin binding and insulin stimulated tyrosine kinase activity is altered in type II diabetes. J Clin Invest 1987; 79: 453–462.PubMedCrossRefGoogle Scholar
  61. 61.
    Obermaier-Kusser B, White MF, Pongratz DE, Su Z, Ermel B, Mulbacher C, Häring HU. A defective intramolecular autoactivation cascade may cause the reduced kinase activity of skeletal muscle insulin receptor from patients with non-insulin-dependent diabetes mellitus. J Biol Chem 1989; 264: 9497–9504.PubMedGoogle Scholar
  62. 62.
    Maegawa H, Shigeta Y, Egawa K, Kobayashi M. Impaired autophosphorylation of insulin receptors from abdominal skeletal muscles in non-obese subjects with NIDDM. Diabetes 1991; 40: 815–819.PubMedCrossRefGoogle Scholar
  63. 63.
    Muller HK, Kellerer M, Ermel B, Muhlhofer A, Obermaier-Kusser B, Vogt B, Haring HU. Prevention by protein kinase C inhibitors of glucose-induced insulin receptor tyrosine kinase resistance in rat fat cells. Diabetes 1991; 40: 1440–1448.PubMedCrossRefGoogle Scholar
  64. 64.
    Berti L, Mosthaf L, Kroder G. Glucose induced translocation of protein kinase C isoforms in rat-1 fibroblasts is paralled by inhibition of the insulin receptor tyrosine kinase. J Biol Chem 1994; 269: 3381–3386.PubMedGoogle Scholar
  65. 65.
    Ahmad A, Lee FT, De Paoli-Roach A, Roach PJ. Phosphorylation of glycogen synthase by the Cat+ and phospholipid-activated protein kinase (protein kinase C). J Biol Chem 1984; 259: 8743–8747.PubMedGoogle Scholar
  66. 66.
    Chen KS, Heydrick S, Kurowski T, Ruderman NB. Diacylglycerol-protein kinase C signaling in skeletal muscle: a possible link to insulin resistance. Trans Assoc Am Physicians 1991; 104: 206–212.PubMedGoogle Scholar
  67. 67.
    Saha AK, Kurowski TG, Ruderman NB. A malonyl-CoA fuel-sensing mechanism in muscle: effects of insulin, glucose and denervation. Am J Physiol 1995; 269: E283 - E289.PubMedGoogle Scholar
  68. 68.
    Bennett PH, Bogardus C, Tuomilehto J, Zimmet P. Epidemiology and natural history of NIDDM: non-obese and obese. In: International Textbook of Diabetes Mellitus. Alberti KGMM, DeFronzo RA, Keen H, Zimmet P, eds. John Wiley, New York, pp. 147–196, 1992.Google Scholar
  69. 69.
    Kadowaki T, Miyake Y, Hagura R, Akanuma Y, Kajinuma H, Kuzuya N, Takaku F, Kosaka K. Risk factors for worsening to diabetes in subjects with impaired glucose tolerance. Diabetologia 1984; 26: 44–49.PubMedCrossRefGoogle Scholar
  70. 70.
    Lundgren H, Bengtsson C, Blohme G, Lapidus I, Waldenström J. Fasting serum insulin concentration and early insulin response as risk determinants for developing diabetes. Diabetic Med 1990; 7: 407–413.PubMedCrossRefGoogle Scholar
  71. 71.
    Skarfors ET, Selinus KI, Lithell HO. Risk factors for developing non-insulin dependent diabetes: a 10 year follow-up of men in Uppsala. Brit Med 11991; 303: 755–760.Google Scholar
  72. 72.
    Haffner SM, Valdez RA, Morales PA, Hazuda HP, Stern MP. Decreased sex hormone-binding globulin predicts noninsulin-dependent diabetes mellitus in women but not in men. J Clin Endocrinol Metab 1993; 77: 56–60.PubMedCrossRefGoogle Scholar
  73. 73.
    Haffner SM, Stern MP, Mitchell BD, Hazuda HP, Patterson JK. Incidence of type II diabetes in Mexican Americans predicted by fasting insulin and glucose levels, obesity and body-fat distribution. Diabetes 1990; 39: 283–288.PubMedCrossRefGoogle Scholar
  74. 74.
    Saad MF, Knowler WC, Pettitt DJ, Nelson RG, Mott DM, Bennett PH. The natural history of impaired glucose tolerance in the Pima Indians. New Engl J Med 1988; 319: 1500–1506.PubMedCrossRefGoogle Scholar
  75. 75.
    Lillioja S, Nyoma BL, Saad MF, Ferraro R, Castillo C, Bennett PH, Bogardus C. Exaggerated early insulin release and insulin resistance in a diabetes-prone population: a metabolic comparison of Pima Indians and Caucasians. J Clin Endocrinol Metab 1991; 73: 866–876.PubMedCrossRefGoogle Scholar
  76. 76.
    Bergström RW, Newell-Morris L, Leonetti DL, Shuman WP, Wahl PW, Fujimoto WY. Association of elevated fasting C-peptide and increased intra-abdominal fat distribution with development of NIDDM in Japanese-American men. Diabetes 1990; 39: 104–111.PubMedCrossRefGoogle Scholar
  77. 77.
    Warram JH, Martin BC, Krolewski AS, Soeldner JS, Kahn RC. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann Intern Med 1990; 113: 909–915.PubMedGoogle Scholar
  78. 78.
    Lindstedt G, Lundberg P-A, Lapidus L, Lundgren H, Bentsson C, Björntorp R. Low sexhormone-binding globulin concentration as independent risk factor for development of NIDDM. Diabetes 1991; 40: 123–128.PubMedCrossRefGoogle Scholar
  79. 79.
    Charles MA, Fontbonne A, Thibult N, Eschwege E. Risk factors for NIDDM in White population. Paris Prospective Study. Diabetes 1991; 40: 796–799.PubMedCrossRefGoogle Scholar
  80. 80.
    Vaag A, Henriksen JE, Beck-Nielsen H. Decreased insulin activation of glycogen synthase in skeletal muscles in young nonobese Caucasian first-degree relatives of patients with noninsulin-dependent diabetes mellitus. J Clin Invest 1992; 89: 782–788.PubMedCrossRefGoogle Scholar
  81. 81.
    Gerich JE. Oral hypoglycemic agents. New Engl J Med 1989; 321: 1231–1245.PubMedCrossRefGoogle Scholar
  82. 82.
    Simonson DC, Del Prato S, Castellino P, Groop L, DeFronzo RA. Effect of glyburide on glycemic control, insulin requirement, and glucose metabolism in insulin-treated diabetic patients. Diabetes 1987; 36: 136–146.PubMedCrossRefGoogle Scholar
  83. 83.
    Perriello G, Misericordia P, Volpi E, Santucci A, Santucci C, Ferrannini E, Ventura MM, Santeusanio F, Brunetti P, Bolli GB. Acute antihyperglycemic mechanisms of metformin in NIDDM. Evidence for suppression of lipid oxidation and hepatic glucose production. Diabetes 1994; 43: 920–928.PubMedCrossRefGoogle Scholar
  84. 84.
    Mitrakou A, Kelley D, Veneman T, Jenssen T, Pangburn T, Reilly T, Gerich J. Contribution of abnormal muscle and liver metabolism to postprandial hyperglycemia in NIDDM. Diabetes 1990; 39: 1381–1390.PubMedCrossRefGoogle Scholar
  85. 85.
    DeFronzo RA. Pathogenesis of type 2 (non-insulin-dependent) diabetes mellitus: a balanced overview. Diabetologia 1992; 35: 389–397.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Hannele Yki-Järvinen

There are no affiliations available

Personalised recommendations