Flow cytometry is a technique that optoelectronically measures the relative intensities of fluorescence of various dyes bound to many individual cells or particles in a rapid period of time. This technique may be used to measure DNA content, analyze cell cycle events, or measure the presence of various antigens such as hematopoietic cell surface markers.11,17,20 Most work using flow cytometry in investigations of the female genital tract have focused on the diagnostic or prognostic significance of DNA ploidy analysis or cell cycle analysis in tumors, particularly epithelial carcinomas of the ovary11 and uterine gestational trophoblastic disease.68 The first part of this chapter discusses technical issues of DNA analysis and the second part reviews the clinically or diagnostically important applications of DNA ploidy and cell cycle analysis in neoplasms of the female genital tract.


Gestational Trophoblastic Disease Serous Borderline Tumor Complete Mole Partial Hydatidiform Mole Persistent Trophoblastic Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aure JC, Hoeg K, Kolstad P (1971) Clinical and histologic studies of ovarian carcinoma: Long term follow-up of 900 cases. Obstet Gynecol 37: 1–9PubMedGoogle Scholar
  2. 2.
    Baak JPA, Delemarre JFM, Langley FA, Talerman A (1986) Grading ovarian tumors. Evaluation of decision making by different pathologists. Anal Quant Cytol Histol 8: 349–353PubMedGoogle Scholar
  3. 3.
    Baak JPA, Langley FA, Talerman A, Delemarre JFM (1986) Interpathologist and intrapathologist disagreement in ovarian tumor grading and typing. Anal Quant Cytol Histol 8: 354–357PubMedGoogle Scholar
  4. 4.
    Baak JPA, Langley FA, Talerman A, Delemarre JFM (1987) The prognostic variability of ovarian tumor grading by different pathologists. Gynecol Oncol 27: 166–172PubMedCrossRefGoogle Scholar
  5. 5.
    Baak JPA, Schipper NW, Wisse-Brekelmans ECM, et al (1988) The prognostic value of morphometrical features and cellular DNA content in cis-platin treated late ovarian cancer patients. Br J Cancer 57: 503–508PubMedCrossRefGoogle Scholar
  6. 6.
    Baisch H, Beck H-P, Christensen JJ, et al (1982) A comparison of mathematical methods for the analysis of DNA histograms obtained by flow cytometry. Cell Tissue Kinet 15: 235–249PubMedGoogle Scholar
  7. 7.
    Baisch H, Gohde W, Linden W (1975) Analysis of PCP-data to determine the fraction of cells in the various phases of the cell cycle. Radiat Environ Biophys 12: 31–39PubMedCrossRefGoogle Scholar
  8. 8.
    Baker W, Haskill S, Fowler WC, Walton LA, Currie JL (1987) Cellular DNA content and CA-125 antigen expression in ovarian carcinomas. Oncology 44: 283–186PubMedCrossRefGoogle Scholar
  9. 9.
    Ball HG, Bell DA, Griffin TW (1990) Cancer of the ovary. In: Osteen RT (ed) Cancer Manual, 8th ed. American Cancer Society Massachusetts Division, Boston, pp 266–270Google Scholar
  10. 10.
    Barnabei UM, Miller PS, Bauer ED, Murad TM, Rademaker AW, Lurain JR (1990) Flow cytometric evaluation of epithelial ovarian cancer. Am J Obstet Gynecol 162: 1584–1592PubMedGoogle Scholar
  11. 11.
    Bell DA (1992) Flow cytometry of ovarian neoplasms. Curr Topics Pathol 85: 337–356CrossRefGoogle Scholar
  12. 12.
    Bell DA, Pastel-Levy C, Flotte TJ (1988) DNA content in serous borderline tumors. Lab Invest 58: 8AGoogle Scholar
  13. 13.
    Benirschke K (1989) Flow cytometry for all mole-like abortion specimens. Hum Pathol 20: 403–404PubMedCrossRefGoogle Scholar
  14. 14.
    Blumenfeld D, Braly PS, Ben-Ezra J, Klevecz RR (1987) Tumor DNA content as a prognostic feature in advanced epithelial ovarian carcinoma. Gynecol Oncol 27: 389–398PubMedCrossRefGoogle Scholar
  15. 15.
    Bresica RJ, Barakat RA, Beller U, et al (1990) The prognostic significance of nuclear DNA content in malignant epithelial tumors of the ovary. Cancer 65: 141–147CrossRefGoogle Scholar
  16. 16.
    Christov K, Vassilev N (1987) Flow cytometric analysis of DNA and cell proliferation in ovarian tumors. Cancer 60: 121–125CrossRefGoogle Scholar
  17. 17.
    Colvin RB, Preffer FI (1987) New technologies in cell analysis by flow cytometry. Arch Pathol Lab Med 111: 628–632PubMedGoogle Scholar
  18. 18.
    Conran RM, Hitchcock CL, Popek EJ, et al (1993) Diagnostic considerations in molar gestations. Hum Pathol 24: 41–18PubMedCrossRefGoogle Scholar
  19. 19.
    Coon JS, Deitch AD, de Vere White RW, et al (1988) Interinstitutional variability in DNA flow cytometric analysis of tumors. The National Cancer Institute’s flow cytometry network experience. Cancer 61: 126–130PubMedCrossRefGoogle Scholar
  20. 20.
    Coon JS, Landay AL, Weinstein RS (1987) Advances in flow cytometry for diagnostic pathology. Lab Invest 47: 453–479Google Scholar
  21. 21.
    Cramer SF, Roth LM, Ulbright TN, et al (1987) Evaluation of the reproducibility of the World Health Organization classification of common ovarian cancers. With emphasis on methodology. Arch Pathol Lab Med 111: 819–829PubMedGoogle Scholar
  22. 22.
    Davis JR, Kerrigan DP, Way DL, Weiner SA (1987) Partial hydatidiform moles: Deoxyribonucleic acid content and course. Am J Obstet Gynecol 157: 969–973PubMedGoogle Scholar
  23. 23.
    Dean PN, Jett JH (1974) Mathematical analysis of DNA distributions derived from flow microfluoremetry. J Cell Biol 60: 523–527PubMedCrossRefGoogle Scholar
  24. 24.
    DiSaia PJ, Creasman WT (1989) Clinical Gynecologic Oncology, 3rd ed. St. Louis, C V Mosby Co, P 349Google Scholar
  25. 25.
    Erba E, Ubezio P, Pepe S, et al (1989) Flow cytometric analysis of DNA content in human ovarian cancers. Br J Cancer 60: 45–50PubMedCrossRefGoogle Scholar
  26. 26.
    Erba E, Vaghi M, Pepe S, et al (1985) DNA index of ovarian carcinomas from 56 patients: in vivo in vitro studies. Br J Cancer 52: 565–573PubMedCrossRefGoogle Scholar
  27. 27.
    Feichter GE, Kuhn W, Czernobilsky B, et al (1985) DNA flow cytometry of ovarian tumors with correlation to histopathology. Int J Gynecol Pathol 4: 336–345PubMedCrossRefGoogle Scholar
  28. 28.
    Feitz WFJ, Beck HLM, Smeets AWGB, et al (1985) Tissuespecific markers in flow cytometry of urological cancers: Cytokeratins in bladder carcinoma. Int J Cancer 36: 349–356PubMedGoogle Scholar
  29. 29.
    Friedlander ML, Hedley DW, Swanson C, Russell P (1988) Prediction of long-term survival by flow cytometric analysis of cellular DNA content in patients with advanced ovarian cancer. J Clin Oncol 6: 282–290PubMedGoogle Scholar
  30. 30.
    Friedlander ML, Hedley DW, Taylor IW, Russell P, Coates AS, Tattersall MHN (1984) Influence of cellular DNA content on survival in advanced ovarian cancer. Cancer Res 44: 397–400PubMedGoogle Scholar
  31. 31.
    Friedlander ML, Russell P, Taylor IW, Hedley DW, Tattersall HN (1984) Flow cytometric analysis of cellular DNA content as an adjunct to the diagnosis of ovarian tumours of borderline malignancy. Pathology 16: 301–306PubMedCrossRefGoogle Scholar
  32. 32.
    Friedlander ML, Taylor IW, Russell P, Musgrove EA, Hedley DH, Tattersall MHN (1983) Ploidy as a prognostic factor in ovarian cancer. Int J Gynecol Pathol 2: 55–63PubMedCrossRefGoogle Scholar
  33. 33.
    Friedlander ML, Taylor IW, Russell P, Tattersall MKN (1984) Cellular DNA content—a stable feature in epithelial ovarian cancer. Br J Cancer 49: 173–179PubMedCrossRefGoogle Scholar
  34. 34.
    Frierson HF (1991) The need for improvement in flow cytometric analysis of ploidy and S-phase fraction. Am J Clin Pathol 95: 439–441PubMedGoogle Scholar
  35. 35.
    Gajewski WH, Fuller AF, Pastel-Levy C, Flotte TJ, Bell DA (in press) Prognostic significance of DNA content in epithelial ovarian cancer. Gynecol OncolGoogle Scholar
  36. 36.
    Gonchoroff NJ, Ryan JJ, Kimlinger TK, et al (1990) Effect of sonication on paraffin-embedded tissue preparation for DNA flow cytometry. Cytometry 11: 642–646PubMedCrossRefGoogle Scholar
  37. 37.
    Gray JW, Dolbeare F, Pallavicini MG (1990) Quantitative cell-cycle analysis. In: Melamed MR, Lindmo T, Mendelsohn ML (eds) Flow Cytometry and Sorting, 2nd ed. New York, Wiley-Liss, pp 445–467Google Scholar
  38. 38.
    Hamaguchi K, Nishimura H, Miyoshi T, et al (1990) Flow cytometric analysis of cellular DNA content in ovarian cancer. Gynecol Oncol 37: 219–223PubMedCrossRefGoogle Scholar
  39. 39.
    Hedley DW (1989) Flow cytometry using paraffin-embedded tissue: Five years on. Cytometry 10: 229–241PubMedCrossRefGoogle Scholar
  40. 40.
    Hedley DW Friedlander ML, Taylor IW, et al (1983) Method for analysis of cellular DNA content of paraffinembedded pathological material using flow cytometry. Histochem Cytochem 31: 1332–1335CrossRefGoogle Scholar
  41. 41.
    Hedley DW, Friedlander ML, Taylor IW (1985) Application of DNA flow cytometry to paraffin-embedded archival material for the study of aneuploidy and its clinical significance. Cytometry 6: 327–333PubMedCrossRefGoogle Scholar
  42. 42.
    Heinonen PK, Morsky P, Aine R, Koivula T, Pystynen P (1988) Hormonal activity of epithelial ovarian tumours in postmenopausal women. Maturitas 9: 325–338PubMedCrossRefGoogle Scholar
  43. 43.
    Hemming JD, Quirke P, Womack C, Wells M, Elston CW, Bird CC (1987) Diagnosis of molar pregnancy and persistent trophoblastic disease by flow cytometry. J Clin Pathol 40: 615–620PubMedCrossRefGoogle Scholar
  44. 44.
    Herbert DJ, Nishiyama RH, Bagwell CB, et al (1989) Effects of several commonly used fixatives on DNA and total nuclear protein analysis by flow cytometry. Am J Clin Pathol 91: 535–541PubMedGoogle Scholar
  45. 45.
    Hernandez E, Bhagavan BS, Parmley TH, Rosenshein NB (1984) Interobserver variability in the interpretation of epithelial ovarian cancer. Gynecol Oncol 17: 117–123PubMedCrossRefGoogle Scholar
  46. 46.
    Hiddeman W, Schumann J, Andreeff M, et al (1984) Convention on nomenclature for DNA cytometry. Cytometry 5: 445–446CrossRefGoogle Scholar
  47. 47.
    Homburger HA, McCarthy R, Deodhar S (1989) Assessment of interlaboratory variability in analytical cytology. Results of the College of American Pathologists Flow Cytometry Study. Arch Pathol Lab Med 113: 667–670PubMedGoogle Scholar
  48. 48.
    Horan PK, Muirhead KA, Slezak E (1990) Standards and controls in flow cytometry. In: Melamed MR, Lindmo T, Mendelsohn ML (eds) Flow Cytometry and Sorting, 2nd ed. New York, Wiley-Liss, pp 397–414Google Scholar
  49. 49.
    Huffman JL, Garin-Chesa P, Gay H, Whitmore Jr WF, Melamed MR (1986) Flow cytometric identifications of human bladder cells using a cytokeratin monoclonal antibody. Ann NY Acad Sci 468: 302–315PubMedCrossRefGoogle Scholar
  50. 50.
    Iversen O-E, Skaarland E (1987) Ploidy assessment of benign and malignant ovarian tumors by flow cytometry. A clinicopathological study. Cancer 60: 82–87PubMedCrossRefGoogle Scholar
  51. 51.
    Iversen OE, Laerum OD (1987) Trout and salmon erythrocytes and human leukocytes as internal standards for ploidy control in flow cytometry. Cytometry 8: 190–196PubMedCrossRefGoogle Scholar
  52. 52.
    Jakobsen A, Bichel P (1989) Ploidy level, histopathological differentiation and response to chemotherapy in serous ovarian cancer. Eur J Cancer Clin Oncol 25: 1589–1593PubMedCrossRefGoogle Scholar
  53. 53.
    Jakobsen A, Hansen V, Poulsen HS (1988) DNA profile and steroid receptor content of human ovarian cancer. Eur J Gynaecol Oncol 6: 461–463Google Scholar
  54. 54.
    Javey H, Borazjani G, Behmard S, Langley FA (1979) Discrepancies in the histological diagnosis of hydatidiform mole. Br J Obstet Gynaecol 86: 480–483PubMedCrossRefGoogle Scholar
  55. 55.
    Joensuu H, Alanen KA, Klemi PJ, Aine R (1990) Evidence for false aneuploid peaks in flow cytometric analysis of paraffin-embedded tissue. Cytometry 11: 421–437CrossRefGoogle Scholar
  56. 56.
    Joensuu H, Kallioniemi O-P (1989) Different opinions on classification of DNA histograms produced from paraffinembedded tissue. Cytometry 10: 711–717PubMedCrossRefGoogle Scholar
  57. 57.
    Kaerns J, Trope C, Kjorstad KE, Abeler V, Pettersen EO (1990) Cellular DNA content as a new prognostic tool in patients with borderline tumors of the ovary. Gynecol Oncol 38: 452–457CrossRefGoogle Scholar
  58. 58.
    Kallioniemi O-P (1988) Comparison of fresh and paraffinembedded tissue as starting material for DNA flow cytometry and evaluation of intratumor heterogeneity. Cytometry 9: 164–169PubMedCrossRefGoogle Scholar
  59. 59.
    Kallioniemi OP, Mattila J, Punnonen R, Koivula T (1988) DNA ploidy level and cell cycle distribution in ovarian cancer: relation to histopathological features of the tumor. Int J Gynecol Pathol 7: 1–11PubMedCrossRefGoogle Scholar
  60. 60.
    Kallioniemi O-P, Punnonen R, Mattila J, Lehtinen M, Koivula T (1988b) Prognostic significance of DNA index, multiploidy, and S-phase fraction in ovarian cancer. Cancer 61: 334–339PubMedCrossRefGoogle Scholar
  61. 61.
    Khoo SK, Hurst T, Kearsley J, et al (1990) Prognostic significance of tumor ploidy in patients with advanced ovarian carcinoma. Gynecol Oncol 39: 284–288PubMedCrossRefGoogle Scholar
  62. 62.
    Klemi PJ, Joensuu H, Mäenpää J, Kiiolholma P (1989) Influence of cellular DNA content on survival in ovarian carcinoma. Obstet Gynecol 74: 200–204PubMedGoogle Scholar
  63. 63.
    Klemi PJ, Joensuu H, Kiilholma P, Maenpaa J (1988) Clinical significance of abnormal nuclear DNA content in serous ovarian tumors. Cancer 62: 2005–2010PubMedCrossRefGoogle Scholar
  64. 64.
    Koss LG (1992) Flow cytometry. In: Diagnostic Cytology and Its Histopathologic Bases, 4th ed. Philadelphia, J B Lippincott, pp 1613–1641Google Scholar
  65. 65.
    Kuhn W, Kaufmann M, Feichter GE, Schmid H, Hanke J, Rummel HH (1988) Psammoma body content and DNA-flow cytometric results as prognostic factors in advanced ovarian carcinoma. Eur J Gynaecol Oncol 9: 234–241PubMedGoogle Scholar
  66. 66.
    Kuhn W, Kaufmann M, Feichter GE, Rummel HH, Schmid H, Heberling D (1989) DNA flow cytometry, clinical and morphological parameters as prognostic factors for advanced malignant and borderline ovarian tumors. Gynecol Oncol 33: 360–367PubMedCrossRefGoogle Scholar
  67. 67.
    Kotylo PK, Michael H, Fineberg N, Sutton G, Roth LM (1992) Flow cytometric analysis of DNA content and RAS P21 oncoprotein expression in ovarian neoplasms (1992) Int J Gynecol Pathol 11: 30–37PubMedCrossRefGoogle Scholar
  68. 68.
    Lage J (1991) Flow cytometric analysis of nuclear DNA content in gestational trophoblastic disease. J Reprod Med 36: 31–35PubMedGoogle Scholar
  69. 69.
    Lage JM, Driscoll SG, Yavner DL, Oliview AP, Mark SD, Weinberg DS (1988) Hydatidiform moles. Application of flow cytometry in diagnosis. Am J Clin Pathol 89: 596–600PubMedGoogle Scholar
  70. 69a.
    Lage JM, Mark SD, Roberts DJ, Goldstein DP, Bernstein MR, Berkowitz RS (1992) A flow cytometric study of 137 fresh hydropic placentas: Correlation between types of hydatidiform moles and nuclear DNA ploidy. Obstet Gynecol 79: 403–410PubMedCrossRefGoogle Scholar
  71. 70.
    Lage JM, Weinberg DS, Yavner DL, Bieber FR (1989) The biology of tetraploid hydatidiform moles: Histopathology, cytogenetics, and flow cytometry. Hum Pathol 20: 419–425PubMedCrossRefGoogle Scholar
  72. 71.
    Lage JM, Weinberg DS, Huettner PC, Mark SD (1992) Flow cytometric analysis of nuclear DNA content in ovarian tumors. Association of ploidy with tumor type, histologic grade, and clinical stage. Cancer 69: 2668–2675PubMedCrossRefGoogle Scholar
  73. 72.
    Martin AR, Kotylo PK, Kennedy JC, Fineberg NS, Roth LM (1992) Flow cytometric DNA analysis of ovarian Brenner tumors and transitional cell carcinomas. Int J Gynecol Pathol 11: 188–196PubMedCrossRefGoogle Scholar
  74. 73.
    Martin DA, Sutton GP, Ulbright TM, Sledge GW, Stehman FB, Ehrlich CE (1989) DNA content as a prognostic index in gestational trophoblastic neoplasia. Gynecol Oncol 34: 383–388PubMedCrossRefGoogle Scholar
  75. 74.
    Murray K, Hopwood L, Volk D, Wilson JF (1989) Cytofluorometric analysis of the DNA content in ovarian carcinoma and its relationship to patient survival. Cancer 63: 2456–2460PubMedCrossRefGoogle Scholar
  76. 75.
    Pallavicini MG, Taylor IW, Vindelov LL (1990) Preparation of cell/nuclei suspensions from solid tumors for flow cytometry. In: Melamed MR, Lindmo T, Mendelsohn ML (eds) Flow Cytometry and Sorting, 2nd ed. New York, Wiley-Liss, pp 187–194Google Scholar
  77. 75a.
    Prat J, Matias-Guiu X, Barreto J (1991) Simultaneous carcinoma involving the endometrium and the ovary. A clinicopathologic, immunohistochemical, and DNA flow cytometric study of 18 cases. Cancer 68: 2455–2459PubMedCrossRefGoogle Scholar
  78. 76.
    Punnonen R, Kallioniemi O-P, Mattila J, Koivula T (1989) Prognostic assessment in Stage I ovarian cancer using a discriminant analysis with clinicopathological and DNA flow cytometric data. Gynecol Obstet Invest 27: 213–216PubMedCrossRefGoogle Scholar
  79. 77.
    Robey SS, Silva EG, Gershenson DM, McLemore D, El-Naggar A, Ordonez NC (1989) Transitional cell carcinoma in high-grade high-stage ovarian carcinoma. An indicator of favorable response to chemotherapy. Cancer 63: 839–847PubMedCrossRefGoogle Scholar
  80. 78.
    Rodenburg CJ, Cornelisse CJ, Heintz PAM, Hermans J, Fleuren GJ (1987) Tumor ploidy as a major prognostic factor in advanced ovarian cancer. Cancer 59: 317–323PubMedCrossRefGoogle Scholar
  81. 79.
    Rodenburg CJ, Cornelisse CJ, Hermans J, Fleuren GJ (1988) DNA flow cytometry and morphometry as prognostic indicators in advanced ovarian cancer: a step forward in predicting the clinical outcome. Gynecol Oncol 29: 176–187PubMedCrossRefGoogle Scholar
  82. 80.
    Rodenburg CJ, Ploem-Zaaijer JJ, Cornelisse CJ, et al (1987) Use of DNA image cytometry in addition to flow cytometry for the study of patients with advanced ovarian cancer. Cancer Res 47: 3938–3941PubMedGoogle Scholar
  83. 81.
    Rutgers DH, Wils IS, Schaap AHP, van Lindert ACM (1987) DNA flow cytometry, histological grade, stage, and age as prognostic factors in human epithelial ovarian carcinomas. Path Res Pract 182: 207–213PubMedCrossRefGoogle Scholar
  84. 82.
    Rutledge ML, Silva EG, McLemore D, El-Naggar A (1989) Serous surface carcinoma of the ovary and peritoneum. A flow cytometry study. Pathol Ann 24(2): 227–236Google Scholar
  85. 83.
    Sahni K, Tribukait B, Einhorn N (1989) Flow cytometric measurement of ploidy and proliferation in effusions of ovarian carcinoma and their possible prognostic significance. Gynecol Oncol 35: 240–245PubMedCrossRefGoogle Scholar
  86. 84.
    Schueler JA, Cornelisse CJ, Jermans J, Trimbos JB, van der Burg MEL, Fleuren GJ (1993) Prognostic factors in well-differentiated early-stage epithelial ovarian cancer. Cancer 71: 787–795PubMedCrossRefGoogle Scholar
  87. 85.
    Sharpless T, Traganos F, Darzynkiewicz Z, Melamed MR (1975) Flow cytofluorimetry: discrimination between single cells and cell aggregates by direct size measurements. Acta Cytol 19: 577–581PubMedGoogle Scholar
  88. 86.
    Sobre B, Frankendal B, Veress B (1982) Importance of histologic grading in the prognosis of epithelial ovarian carcinoma. Obstet Gynecol 59: 567–582Google Scholar
  89. 87.
    Sunde L, Vejerslev LO, Larsen JK, et al (1989) Genetically different cell subpopulations in hydatidiform moles. A study of three cases by RFLP, flow cytometric, cytogenetic, HLA, and morphologic analyses. Cancer Genet Cytogenet 37: 179–192PubMedCrossRefGoogle Scholar
  90. 88.
    Trebeck CE, Friedlander ML, Russell P, Baird PJ (1987) Brenner tumours of the ovary: A study of the histology, immunohistochemistry and cellular DNA content in benign, borderline and malignant ovarian tumours. Pathology 19: 241–246PubMedCrossRefGoogle Scholar
  91. 89.
    Vindelov LL, Christensen IJ, Jensen G, et al (1983) Limits of detection of nuclear DNA abnormalities by flow cytometric DNA analysis. Cytometry 3: 332–339PubMedCrossRefGoogle Scholar
  92. 90.
    Volm M, Bruggemann A, Gunther M, Kleine W, Pfleiderer A, Vogt-Schaden M (1985) Prognostic relevance of ploidy, proliferation, and resistance-predictive tests in ovarian carcinoma. Cancer Res 45: 5180–5185PubMedGoogle Scholar
  93. 91.
    Volm M, Kleine W, Pfleiderer A (1989) Flow-cytometric prognostic factors for the survival of patients with ovarian carcinoma: A 5-year follow-up study. Gynecol Oncol 35: 84–89PubMedCrossRefGoogle Scholar
  94. 92.
    Watson JV, Curling ON, Munn CF, Hudson CN (1987) Oncogene expression in ovarian cancer: a pilot study of c-myc oncoprotein in serous papillary ovarian cancer. Gynecol Oncol 28: 137–150PubMedCrossRefGoogle Scholar
  95. 93.
    Wersto RP, Liblit RL, Deitch D, Koss LG (1991) Variability in DNA measurements in multiple tumor samples of human colonic carcinoma. Cancer 67: 106–115PubMedCrossRefGoogle Scholar
  96. 94.
    Wheeless LL, Coon JS, Cox C, et al (1991) Precision of DNA flow cytometry in inter-institutional analyses. Cytometry 12: 405–412PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Debra A. Bell

There are no affiliations available

Personalised recommendations