Skip to main content
Book cover

Biodynamics pp 166–223Cite as

The Veins

  • Chapter

Abstract

Veins normally contain about 80% of the total volume of blood in the systemic vascular system. Any change in the blood volume in the veins will affect blood flow through the heart. The most important feature of the systemic veins is, therefore, their compliance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, R. S. (1963). The peripheral venous system. Chapter 31 of Handbook of Physiology, Sec. 2, Vol. 2 Circulation. American Physiological Society, Bethesda, MD, pp. 1075–1098.

    Google Scholar 

  • Anliker, M. and Raman, K. R. (1966). Korotkoff sounds at diastole—a phenomenon of dynamic instability of fluid-filled shells Inst. J. Solids & Struct. 2: 467–491.

    Article  Google Scholar 

  • Anliker, M., Wells, M. K. and Ogden, E. (1969). The transmission characteristics of large and small pressure waves in the abdominal vena cava IEEE Trans. Biomedical Eng. BME-16: 262–273.

    Article  Google Scholar 

  • Attinger, E. O. (1969). Wall properties of veins IEEE Trans. Biomedical Eng. BME-16 : 253–261.

    Article  Google Scholar 

  • Banister, J. and Torrance, R. W. (1960). The effects of the tracheal pressure upon flow : Pressure relations in the vascular bed of isolated lungs Quart. J. Exp. Physiol. 45: 353–367.

    Google Scholar 

  • Brown, E., Greenfield, A. D. M., Goei, J. S., and Plassaras, G. (1966). Filling and emptying of the low-pressure blood vessels of the human forearm J. Appl. Physiol. 21 (2): 573–582.

    Google Scholar 

  • Burton, A. C. (1965) Physiology and Biophysics of the Circulation. Year Book Medical Pub., Chicago, Ill.

    Google Scholar 

  • Caro, C. G. and Harrison, G. K. (1962). Observations on pulse wave velocity and pulsatile blood pressure in the human pulmonary circulation Clin. Sci. 23 : 271–329.

    Google Scholar 

  • Caro, C. G., Pedley, T. J., Schroter, R. C. and Seed, W. A. (1978) The Mechanics of the Circulation, Oxford Univ. Press, Oxford.

    MATH  Google Scholar 

  • Conrad, W. A. (1969). Pressure flow relationship in collapsible tubes IEEE Trans. Biomedical Eng. BME-16 : 284–295.

    Article  Google Scholar 

  • Cumming, G., Henderson, R., Horsfield, K. and Singhal, S. S. (1968). The functional morphology of the pulmonary circulation. In The Pulmonary Circulation and Interstitial Space. (A. Fishman and H. Hecht, eds.) Univ. Chicago Press, Chicago, pp. 327–338.

    Google Scholar 

  • Dawson, S. V. and Elliott, E. A. Wave-speed limitation on expiratory flow-a unifying concept J. Appl. Physiol. 43(3) : 498–515.

    Google Scholar 

  • Downey, J. M. and Kirk, E. S. (1975). Inhibition of coronary blood flow by vascular waterfall phenomenon Circ. Res. 36 753–760.

    Article  Google Scholar 

  • Duomarco, J. L. and Rimini, R. (1954). Energy and hydraulic gradients along systemic veins Am. J. Physiol. 178: 215–220.

    Google Scholar 

  • Elliott, E. A. and Dawson, S. V. (1977). Test of wave-speed theory of flow limitation in elastic tubes J. Appl. Physiol. 43: 516–522.

    Google Scholar 

  • Flaherty, J. E., Keller, J. B. and Rubinow, S. I. (1972). Post buckling behavior of elastic tubes and rings with opposite sides in contact SIAM J. Applied Mathematics 23(4) : 446–455.

    Article  MATH  Google Scholar 

  • Flügge, W. (1960) Stresses in Shells. Springer-Verlag, Heidelberg.

    Book  MATH  Google Scholar 

  • Fry, D. L., Thomas, L. J. and Greenfield, J. C. (1980). Flow in collapsible tubes. In Basic Hemodynamics and Its Role in Disease Processes, (Patel, D. J., and Vaishnav, R. N, eds.) University Park, Baltimore, Ch. 9, pp. 407–424.

    Google Scholar 

  • Fung, Y. C. (1977) A First Course in Continuum Mechanics. 2nd ed. Prentice-Hall, Englewood Cliffs, N. J.

    Google Scholar 

  • Fung, Y. C. (1981) Biomechanics : Mechanical Properties of Living Tissues. SpringerVerlag, New York.

    Google Scholar 

  • Fung, Y. C. and Sechler, E. E. (1960). Instability of thin elastic shells. In Structural Mechanics. Proc. of Symp. on Naval Structure Mechanics, (Goodier, J. N. and Hoff, N., eds.) Pergamon Press.

    Google Scholar 

  • Fung, Y. C. and Sobin, S. S. (1972a). Elasticity of the pulmonary alveolar sheet Circulation Res. 30 : 451–469.

    Article  Google Scholar 

  • Fung, Y. C. and Sobin, S. S. (1972b). Pulmonary alveolar blood flow Circulation Res. 30: 470–490.

    Article  Google Scholar 

  • Fung, Y. C., Perrone, N. and Anliker, M. (1972) Biomechanics: Its Foundations and Objectives. Prentice-Hall, Englewood Cliffs, N. J.

    Google Scholar 

  • Fung, Y. C. and Sechler, E. E. (eds.) (1974) Thin Shell Structures: Theory, Experiment and Design. Prentice-Hall, Englewood Cliffs, N. J.

    Google Scholar 

  • Fung, Y. C., Sobin, S. S., Tremer, H., Yen, M. R. T. and Ho, H. H. (1983). Patency and compliance of pulmonary veins when airway pressure exceeds blood pressure J. Appl. Physiol: Respir., Exercise, and Environ. Physiol. 54 : 1538–1549.

    Google Scholar 

  • Gibson, A. H. (1910). On the flow of water through pipes and passages having converging or diverging boundaries Proc. Roy. Soc. London, A, 83: 366–378.

    Article  ADS  Google Scholar 

  • Glazier, J. B., Hughes, J. M. B., Maloney, J. E. and West, J. B. (1969). Measurements of capillary dimensions and blood volume in rapidly frozen lungs J. Appl. Physiol. 26: 65–76.

    Google Scholar 

  • Greenfield, J. C., Jr., and Tindall, G. T. (1965). Effect of acute increase in intracranicl pressure on blood flow in the internal carotid artery of man J. Clin. Invest. 44: 1343–1351.

    Article  Google Scholar 

  • Griffiths, D. J. (1969). Urethral elasticity and micturition hydrodynamics in females Medical and Biological Engineering 7: 201–215.

    Article  Google Scholar 

  • Griffiths, D. J. (1971). Hydrodynamics of male micturition-I. Theory of steady flow through elastic-walled tubes Medical & Biol. Engineering 9 : 581–588. II. Measurements of stream parameters and urethral elasticity ibid. 9: 589–596.

    Article  Google Scholar 

  • Griffiths, D. J. (1973). The mechanics of the urethra and of micturition British J. of Urology 45: 497–507.

    Article  Google Scholar 

  • Guntheroth, W. G. (1969). In vivo measurement of dimensions of veins with implications regarding control of venous return IEEE Trans. Biomededical Eng. BME 16 (4): 247–253.

    Article  Google Scholar 

  • Henderson, Y. and Johnson, F. E. (1912). Two modes of closure of the heart valve Heart, 4: 69–82.

    Google Scholar 

  • Holt, J. P. (1941). The collapse factor in the measurement of venous pressure : The flow of fluid through collapsible tubes Am. J. Physiol. 134: 292–299.

    Google Scholar 

  • Holt, J. P. (1953). Flow of liquids through collapsible tubes Amer. Heart J. 46 : 715–725.

    Article  Google Scholar 

  • Holt, J. P. (1969). Flow through collapsible tubes and through in situ veins IEEE Trans. Biomedical Eng. BME-16: 274–283.

    Article  Google Scholar 

  • Howell, J. B. L., Permutt, S., Proctor, D. F. and Riley, R. L. (1961). Effect of inflation of the lung on different parts of pulmonary vascular bed J. Appl. Physiol. 16: 71–76.

    Google Scholar 

  • Hyatt, R. E., Schilder, D. P. and Fry, D. L. (1958). Relationship between maximum expiratory flow and degree of lung inflation J. Appl. Physiol. 13: 331–336.

    Google Scholar 

  • Kamm, R. D. and Shapiro, A. H. (1970). Unsteady flow in collapsible tube subjected to external pressure or body forces J. Fluid Mechanics 95: Part 1, 1–78.

    Google Scholar 

  • Katz, A. I., Chen, Y. and Moreno, A. H. (1969). Flow through a collapsible tube: Experimental analysis and mathematical model Biophysical J. 9: 1261–1279.

    Article  ADS  Google Scholar 

  • Kececioglu, I., Kamm, R. D. and Shapiro, A. H. (1978). Structure of shock waves in collapsible tube flow (Abstract) Proc. 31st Ann. Conf. Engng. in Medicine & Biol., Atlanta, Ga.

    Google Scholar 

  • Kety, S. S., Shenkin, H. A. and Schmidt, C. F. (1948). The effects of increased intracranial pressure on cerebral circulatory functions in man J. Clin. Invest. 27: 493–499.

    Article  Google Scholar 

  • Kline, S. J. (1959). On the nature of stall J. of Basic Eng., Trans. ASME 81, Ser. D: 305–320. See also Kline et al., loc. cit. : 321–331.

    Google Scholar 

  • Kline, S. J., Moore, C. A. and Cochran, D. L. (1957). Wide-angle diffusers of high performance and diffuser flow mechanisms J. Aeronautical Sci. 24: 469–471.

    Google Scholar 

  • Knowlton, F. P. and Starling, E. H. (1912). The influence of variations in temperature and blood pressure on the performance of the isolated mammalian heart J. Physiol. (London) 44: 206–219.

    Google Scholar 

  • Kresch, E. (1979). Compliance of flexible tubes J. Biomechanics. 12: 825–839.

    Article  Google Scholar 

  • Kresch, E. and Noordergraaf, A. (1969). A mathematical model for the pressure-flow relationship in segment of vein IEEE Trans. Biomedical Eng. BME-16: 296–307.

    Article  Google Scholar 

  • Lai-Fook, S. J. (1979). A continuum mechanics analysis of pulmonary vascular interdependence in isolated dog lobes J. Appl. Physiol. 45: 419–429.

    Google Scholar 

  • Lyon, C. K., Scott, J. B., and Wang, C. Y. (1980). Flow through collapsible tubes at low Reynolds numbers : Applicability of the waterfall model Circulation Res. 47: 68–73.

    Article  Google Scholar 

  • Macklin, C. C. (1946). Evidences of increase in the capacity of the pulmonary arteries and veins of dogs, cats and rabbits during inflation of the freshly excised lung Revue canadienne de Biol. 5: 199–232.

    Google Scholar 

  • Matsuzaki, Y. and Fung, Y. C. (1976). On separation of a divergent flow at moderate Reynolds numbers J. Appl. Mech., Trans. ASME 98: 227–231.

    Article  Google Scholar 

  • Matsuzaki, Y. and Fung, Y. C. (1977). Unsteady fluid dynamic forces on a simplysupported circular cylinder of finite length conveying a flow, with applications to stability analysis J. of Sound and Vibration, 54 (3): 317–330.

    Article  ADS  MATH  Google Scholar 

  • McCutcheon, E. P. and Rushmer, R. F. (1967). Korotkoff sounds: an experimental critique Circulation Res. 20: 149–169.

    Article  Google Scholar 

  • Mead, J. and Whittenberger, J. L. (1964). Lung inflation and hemodynamics. In Handbook of Physiology Sec. 3, Respiration, (W. O. Fenn and H. Rahn, eds.) Vol 1, Amer. Physiol. Soc., Washington, D.C. pp. 477–486.

    Google Scholar 

  • Moreno, A. H., Katz, A. I., Gold, L. D. and Reddy, R. V. (1970). Mechanics of distension of dog veins and other very thin-walled tubular structures Circulation Res. 27: 1069–1079.

    Article  Google Scholar 

  • Morkin, E., Collins, J. A., Goldman, H. S. and Fishman, A. P. (1965). Pattern of blood flow in the pulmonary veins of the dog J. Appl. Physiol. 20 : 1118–1128.

    Google Scholar 

  • Moses, R. A. (1963). Hydrodynamic model eye Ophthalmologica 146: 137–142.

    Article  Google Scholar 

  • Olsen, J. H. and Shapiro, A. H. (1967). Large amplitude unsteady flow in liquid-filled elastic tubes J. Fluid Mechanics 29: 513–538.

    Article  ADS  Google Scholar 

  • Pedley, T. J. (1980) The Fluid Mechanics of Large Blood Vessels. Cambridge Univ. Press, Cambridge & New York, Ch. 6, Flow in collapsible tubes. pp. 301–368.

    Book  MATH  Google Scholar 

  • Permutt, S., Bromberger-Barnea, B. and Bane, H. N. (1962). Alveolar pressure, pulmonary venous pressure, and the vascular waterfall Med. Thorac. 19: 239–260.

    Google Scholar 

  • Permutt, S. and Riley, R. L. (1963). Hemodynamics of collapsible vessels with tone : vascular waterfall J. Appl. Physiol. 18: 924–932.

    Google Scholar 

  • Pollack, A. A. and Wood, E. H. (1949). Venous pressure in the saphenous vein at the ankle in man during exercise and changes in posture J. Appl. Physiol. 1: 649–662.

    Google Scholar 

  • Prescott, J. (1924) Applied Elasticity. 1st ed. 1924. Reprint, Dover Publications, New York.

    Google Scholar 

  • Ribreau, C. and Bonis, M. (1978). Propagation et écoulement dans les tubes collabables. Contribution à l’étude des vaisseaux sanguins J. Fr. Biophy. & Med. Nucl. 2: 153–158.

    Google Scholar 

  • Rodbard, S. (1955). Flow through collapsible tubes : augmented flow resistance produced by resistance at the outlet Circulation 11: 280–287.

    Article  Google Scholar 

  • Rodbard, S. and Saiki, H. (1953). Flow through collapsible tubes Amer. Heart J. 46: 715–725.

    Article  Google Scholar 

  • Rubinow, S. I. and Keller, J. B. (1972). Flow of a viscous fluid through an elastic tube with application to blood flow J. Theor. Biology. 35: 299–313.

    Article  Google Scholar 

  • Shapiro, A. H. (1977). Steady flow in collapsible tubes, J. Biomech. Engng. Trans. ASME 99 (K): 126–147.

    Article  Google Scholar 

  • Shepherd, J. T., and Vanhoutte, P. M. (1975) Veins and their Control. Saunders, London, Philadephia.

    Google Scholar 

  • Singhal, S., Henderson, R., Horsfield, K., Harding, K. and Cumming, G. (1973). Morphometry of the human pulmonary arterial tree Circulation Res. 33: 190–197.

    Article  Google Scholar 

  • Smith, F. T. (1977). Upstream interactions in channel flows J. Fluid Mechanics. 79: 631–655.

    Article  ADS  MATH  Google Scholar 

  • Sobin, S. S., Fung, Y. C., Tremer, H. and Rosenquist, T. H. (1972). Elasticity of the pulmonary interalveolar microvascular sheet in the cat Circulation Res. 30: 440–450.

    Article  Google Scholar 

  • Sobin, S. S., Lindal, R. G., Fung, Y. C. and Tremer, H. M. (1978). Elasticity of the smallest noncapillary pulmonary blood vessels in the cat. Microvas. Res. 15 : 57–68.

    Article  Google Scholar 

  • Sobin, S. S., Fung, Y. C., Lindal, R. G., Tremer, H. M. and Clark, L. (1980). Topology of pulmonary arterioles, capillaries and venules in the cat Microvas. Res. 19: 217–233.

    Article  Google Scholar 

  • Strahler, A. N. (1964). Quantitative geomorphology of drainage basin and channel networks. In Handbook of Applied Hydrology: Compedium of Water Resources Technology (Chow, V. T., ed.) McGraw-Hill, New York.

    Google Scholar 

  • Szidon, J. P., Ingram, R. H. and Fishman, A. P. (1968). Origin of the pulmonary venous flow pulse Amer. J. Physiol. 214: 10–14.

    Google Scholar 

  • Timoshenko, S. and Gere, J. M. (1961) Theory of Elastic Stability. McGraw—Hill, New York, 1st ed. 1936., 2nd ed. 1961.

    Google Scholar 

  • Ur. A. and Gordon, M. (1970). Origin of Korotkoff sounds Am. J. Physiol. 218: 524–529.

    Google Scholar 

  • Weibel, E. R. (1963) Morphometry of the Human Lung. Springer-Verlag, Berlin.

    Google Scholar 

  • Wexler, L., Bergel, D. H., Gabe, I. T., Makin, G. S., and Mills, C. J. (1968). Velocity of blood flow in normal human venae cavae Circulation Res. 23 : 349–359.

    Article  Google Scholar 

  • Wild, R., Pedley, T. J. and Riley, D. S. (1977). Viscous flow in collapsible tubes of slowly-varying elliptical cross-section J. Fluid Mech. 81 : 273–294.

    Article  ADS  MATH  Google Scholar 

  • Wood, J. E. (1965) The Veins: normal and abnormal functions. Little, Brown, Boston, 224 pp.

    Google Scholar 

  • Yen, R. T. and Foppiano, L. (1981). Elasticity of small pulmonary veins in the cat J. Biomech. Engng. Trans. ASME 103 : 38–42.

    Article  Google Scholar 

  • Yen, R. T., Fung, Y. C. and Bingham, N. (1980). Elasticity of small pulmonary arteries in the cat J. Biomech. Engng. Trans. ASME 102: 170–177.

    Article  Google Scholar 

  • Yen, R. T., Zhuang, F. Y., Fung, Y. C., Ho, H. H., Tremer, H. and Sobin, S. S. (1983). Morphometry of cat’s pulmonary venous tree J. Appl. Physiol. In press.

    Google Scholar 

  • Young, D. F. and Tsai, F. Y. (1973). Flow characteristics in models of arterial stenosis. I. Steady flow J. Biomechanics. 6: 395–410.

    Article  Google Scholar 

  • Young, D. F., Cholvin, N. R., and Roth, A. C. (1975). Pressure drop across artificially induced stenoses in the femoral arteries of dogs Circ. Res. 36: 735–743.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fung, Y.C. (1984). The Veins. In: Biodynamics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3884-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3884-1_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3886-5

  • Online ISBN: 978-1-4757-3884-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics