Biodynamics pp 166-223 | Cite as

The Veins

  • Y. C. Fung


Veins normally contain about 80% of the total volume of blood in the systemic vascular system. Any change in the blood volume in the veins will affect blood flow through the heart. The most important feature of the systemic veins is, therefore, their compliance.


Pulmonary Vein Transmural Pressure Elastic Tube Pleural Pressure Collapsible Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, R. S. (1963). The peripheral venous system. Chapter 31 of Handbook of Physiology, Sec. 2, Vol. 2 Circulation. American Physiological Society, Bethesda, MD, pp. 1075–1098.Google Scholar
  2. Anliker, M. and Raman, K. R. (1966). Korotkoff sounds at diastole—a phenomenon of dynamic instability of fluid-filled shells Inst. J. Solids & Struct. 2: 467–491.CrossRefGoogle Scholar
  3. Anliker, M., Wells, M. K. and Ogden, E. (1969). The transmission characteristics of large and small pressure waves in the abdominal vena cava IEEE Trans. Biomedical Eng. BME-16: 262–273.CrossRefGoogle Scholar
  4. Attinger, E. O. (1969). Wall properties of veins IEEE Trans. Biomedical Eng. BME-16 : 253–261.CrossRefGoogle Scholar
  5. Banister, J. and Torrance, R. W. (1960). The effects of the tracheal pressure upon flow : Pressure relations in the vascular bed of isolated lungs Quart. J. Exp. Physiol. 45: 353–367.Google Scholar
  6. Brown, E., Greenfield, A. D. M., Goei, J. S., and Plassaras, G. (1966). Filling and emptying of the low-pressure blood vessels of the human forearm J. Appl. Physiol. 21 (2): 573–582.Google Scholar
  7. Burton, A. C. (1965) Physiology and Biophysics of the Circulation. Year Book Medical Pub., Chicago, Ill.Google Scholar
  8. Caro, C. G. and Harrison, G. K. (1962). Observations on pulse wave velocity and pulsatile blood pressure in the human pulmonary circulation Clin. Sci. 23 : 271–329.Google Scholar
  9. Caro, C. G., Pedley, T. J., Schroter, R. C. and Seed, W. A. (1978) The Mechanics of the Circulation, Oxford Univ. Press, Oxford.zbMATHGoogle Scholar
  10. Conrad, W. A. (1969). Pressure flow relationship in collapsible tubes IEEE Trans. Biomedical Eng. BME-16 : 284–295.CrossRefGoogle Scholar
  11. Cumming, G., Henderson, R., Horsfield, K. and Singhal, S. S. (1968). The functional morphology of the pulmonary circulation. In The Pulmonary Circulation and Interstitial Space. (A. Fishman and H. Hecht, eds.) Univ. Chicago Press, Chicago, pp. 327–338.Google Scholar
  12. Dawson, S. V. and Elliott, E. A. Wave-speed limitation on expiratory flow-a unifying concept J. Appl. Physiol. 43(3) : 498–515.Google Scholar
  13. Downey, J. M. and Kirk, E. S. (1975). Inhibition of coronary blood flow by vascular waterfall phenomenon Circ. Res. 36 753–760.CrossRefGoogle Scholar
  14. Duomarco, J. L. and Rimini, R. (1954). Energy and hydraulic gradients along systemic veins Am. J. Physiol. 178: 215–220.Google Scholar
  15. Elliott, E. A. and Dawson, S. V. (1977). Test of wave-speed theory of flow limitation in elastic tubes J. Appl. Physiol. 43: 516–522.Google Scholar
  16. Flaherty, J. E., Keller, J. B. and Rubinow, S. I. (1972). Post buckling behavior of elastic tubes and rings with opposite sides in contact SIAM J. Applied Mathematics 23(4) : 446–455.zbMATHCrossRefGoogle Scholar
  17. Flügge, W. (1960) Stresses in Shells. Springer-Verlag, Heidelberg.zbMATHCrossRefGoogle Scholar
  18. Fry, D. L., Thomas, L. J. and Greenfield, J. C. (1980). Flow in collapsible tubes. In Basic Hemodynamics and Its Role in Disease Processes, (Patel, D. J., and Vaishnav, R. N, eds.) University Park, Baltimore, Ch. 9, pp. 407–424.Google Scholar
  19. Fung, Y. C. (1977) A First Course in Continuum Mechanics. 2nd ed. Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  20. Fung, Y. C. (1981) Biomechanics : Mechanical Properties of Living Tissues. SpringerVerlag, New York.Google Scholar
  21. Fung, Y. C. and Sechler, E. E. (1960). Instability of thin elastic shells. In Structural Mechanics. Proc. of Symp. on Naval Structure Mechanics, (Goodier, J. N. and Hoff, N., eds.) Pergamon Press.Google Scholar
  22. Fung, Y. C. and Sobin, S. S. (1972a). Elasticity of the pulmonary alveolar sheet Circulation Res. 30 : 451–469.CrossRefGoogle Scholar
  23. Fung, Y. C. and Sobin, S. S. (1972b). Pulmonary alveolar blood flow Circulation Res. 30: 470–490.CrossRefGoogle Scholar
  24. Fung, Y. C., Perrone, N. and Anliker, M. (1972) Biomechanics: Its Foundations and Objectives. Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  25. Fung, Y. C. and Sechler, E. E. (eds.) (1974) Thin Shell Structures: Theory, Experiment and Design. Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  26. Fung, Y. C., Sobin, S. S., Tremer, H., Yen, M. R. T. and Ho, H. H. (1983). Patency and compliance of pulmonary veins when airway pressure exceeds blood pressure J. Appl. Physiol: Respir., Exercise, and Environ. Physiol. 54 : 1538–1549.Google Scholar
  27. Gibson, A. H. (1910). On the flow of water through pipes and passages having converging or diverging boundaries Proc. Roy. Soc. London, A, 83: 366–378.ADSCrossRefGoogle Scholar
  28. Glazier, J. B., Hughes, J. M. B., Maloney, J. E. and West, J. B. (1969). Measurements of capillary dimensions and blood volume in rapidly frozen lungs J. Appl. Physiol. 26: 65–76.Google Scholar
  29. Greenfield, J. C., Jr., and Tindall, G. T. (1965). Effect of acute increase in intracranicl pressure on blood flow in the internal carotid artery of man J. Clin. Invest. 44: 1343–1351.CrossRefGoogle Scholar
  30. Griffiths, D. J. (1969). Urethral elasticity and micturition hydrodynamics in females Medical and Biological Engineering 7: 201–215.CrossRefGoogle Scholar
  31. Griffiths, D. J. (1971). Hydrodynamics of male micturition-I. Theory of steady flow through elastic-walled tubes Medical & Biol. Engineering 9 : 581–588. II. Measurements of stream parameters and urethral elasticity ibid. 9: 589–596.CrossRefGoogle Scholar
  32. Griffiths, D. J. (1973). The mechanics of the urethra and of micturition British J. of Urology 45: 497–507.CrossRefGoogle Scholar
  33. Guntheroth, W. G. (1969). In vivo measurement of dimensions of veins with implications regarding control of venous return IEEE Trans. Biomededical Eng. BME 16 (4): 247–253.CrossRefGoogle Scholar
  34. Henderson, Y. and Johnson, F. E. (1912). Two modes of closure of the heart valve Heart, 4: 69–82.Google Scholar
  35. Holt, J. P. (1941). The collapse factor in the measurement of venous pressure : The flow of fluid through collapsible tubes Am. J. Physiol. 134: 292–299.Google Scholar
  36. Holt, J. P. (1953). Flow of liquids through collapsible tubes Amer. Heart J. 46 : 715–725.CrossRefGoogle Scholar
  37. Holt, J. P. (1969). Flow through collapsible tubes and through in situ veins IEEE Trans. Biomedical Eng. BME-16: 274–283.CrossRefGoogle Scholar
  38. Howell, J. B. L., Permutt, S., Proctor, D. F. and Riley, R. L. (1961). Effect of inflation of the lung on different parts of pulmonary vascular bed J. Appl. Physiol. 16: 71–76.Google Scholar
  39. Hyatt, R. E., Schilder, D. P. and Fry, D. L. (1958). Relationship between maximum expiratory flow and degree of lung inflation J. Appl. Physiol. 13: 331–336.Google Scholar
  40. Kamm, R. D. and Shapiro, A. H. (1970). Unsteady flow in collapsible tube subjected to external pressure or body forces J. Fluid Mechanics 95: Part 1, 1–78.Google Scholar
  41. Katz, A. I., Chen, Y. and Moreno, A. H. (1969). Flow through a collapsible tube: Experimental analysis and mathematical model Biophysical J. 9: 1261–1279.ADSCrossRefGoogle Scholar
  42. Kececioglu, I., Kamm, R. D. and Shapiro, A. H. (1978). Structure of shock waves in collapsible tube flow (Abstract) Proc. 31st Ann. Conf. Engng. in Medicine & Biol., Atlanta, Ga.Google Scholar
  43. Kety, S. S., Shenkin, H. A. and Schmidt, C. F. (1948). The effects of increased intracranial pressure on cerebral circulatory functions in man J. Clin. Invest. 27: 493–499.CrossRefGoogle Scholar
  44. Kline, S. J. (1959). On the nature of stall J. of Basic Eng., Trans. ASME 81, Ser. D: 305–320. See also Kline et al., loc. cit. : 321–331.Google Scholar
  45. Kline, S. J., Moore, C. A. and Cochran, D. L. (1957). Wide-angle diffusers of high performance and diffuser flow mechanisms J. Aeronautical Sci. 24: 469–471.Google Scholar
  46. Knowlton, F. P. and Starling, E. H. (1912). The influence of variations in temperature and blood pressure on the performance of the isolated mammalian heart J. Physiol. (London) 44: 206–219.Google Scholar
  47. Kresch, E. (1979). Compliance of flexible tubes J. Biomechanics. 12: 825–839.CrossRefGoogle Scholar
  48. Kresch, E. and Noordergraaf, A. (1969). A mathematical model for the pressure-flow relationship in segment of vein IEEE Trans. Biomedical Eng. BME-16: 296–307.CrossRefGoogle Scholar
  49. Lai-Fook, S. J. (1979). A continuum mechanics analysis of pulmonary vascular interdependence in isolated dog lobes J. Appl. Physiol. 45: 419–429.Google Scholar
  50. Lyon, C. K., Scott, J. B., and Wang, C. Y. (1980). Flow through collapsible tubes at low Reynolds numbers : Applicability of the waterfall model Circulation Res. 47: 68–73.CrossRefGoogle Scholar
  51. Macklin, C. C. (1946). Evidences of increase in the capacity of the pulmonary arteries and veins of dogs, cats and rabbits during inflation of the freshly excised lung Revue canadienne de Biol. 5: 199–232.Google Scholar
  52. Matsuzaki, Y. and Fung, Y. C. (1976). On separation of a divergent flow at moderate Reynolds numbers J. Appl. Mech., Trans. ASME 98: 227–231.CrossRefGoogle Scholar
  53. Matsuzaki, Y. and Fung, Y. C. (1977). Unsteady fluid dynamic forces on a simplysupported circular cylinder of finite length conveying a flow, with applications to stability analysis J. of Sound and Vibration, 54 (3): 317–330.ADSzbMATHCrossRefGoogle Scholar
  54. McCutcheon, E. P. and Rushmer, R. F. (1967). Korotkoff sounds: an experimental critique Circulation Res. 20: 149–169.CrossRefGoogle Scholar
  55. Mead, J. and Whittenberger, J. L. (1964). Lung inflation and hemodynamics. In Handbook of Physiology Sec. 3, Respiration, (W. O. Fenn and H. Rahn, eds.) Vol 1, Amer. Physiol. Soc., Washington, D.C. pp. 477–486.Google Scholar
  56. Moreno, A. H., Katz, A. I., Gold, L. D. and Reddy, R. V. (1970). Mechanics of distension of dog veins and other very thin-walled tubular structures Circulation Res. 27: 1069–1079.CrossRefGoogle Scholar
  57. Morkin, E., Collins, J. A., Goldman, H. S. and Fishman, A. P. (1965). Pattern of blood flow in the pulmonary veins of the dog J. Appl. Physiol. 20 : 1118–1128.Google Scholar
  58. Moses, R. A. (1963). Hydrodynamic model eye Ophthalmologica 146: 137–142.CrossRefGoogle Scholar
  59. Olsen, J. H. and Shapiro, A. H. (1967). Large amplitude unsteady flow in liquid-filled elastic tubes J. Fluid Mechanics 29: 513–538.ADSCrossRefGoogle Scholar
  60. Pedley, T. J. (1980) The Fluid Mechanics of Large Blood Vessels. Cambridge Univ. Press, Cambridge & New York, Ch. 6, Flow in collapsible tubes. pp. 301–368.zbMATHCrossRefGoogle Scholar
  61. Permutt, S., Bromberger-Barnea, B. and Bane, H. N. (1962). Alveolar pressure, pulmonary venous pressure, and the vascular waterfall Med. Thorac. 19: 239–260.Google Scholar
  62. Permutt, S. and Riley, R. L. (1963). Hemodynamics of collapsible vessels with tone : vascular waterfall J. Appl. Physiol. 18: 924–932.Google Scholar
  63. Pollack, A. A. and Wood, E. H. (1949). Venous pressure in the saphenous vein at the ankle in man during exercise and changes in posture J. Appl. Physiol. 1: 649–662.Google Scholar
  64. Prescott, J. (1924) Applied Elasticity. 1st ed. 1924. Reprint, Dover Publications, New York.Google Scholar
  65. Ribreau, C. and Bonis, M. (1978). Propagation et écoulement dans les tubes collabables. Contribution à l’étude des vaisseaux sanguins J. Fr. Biophy. & Med. Nucl. 2: 153–158.Google Scholar
  66. Rodbard, S. (1955). Flow through collapsible tubes : augmented flow resistance produced by resistance at the outlet Circulation 11: 280–287.CrossRefGoogle Scholar
  67. Rodbard, S. and Saiki, H. (1953). Flow through collapsible tubes Amer. Heart J. 46: 715–725.CrossRefGoogle Scholar
  68. Rubinow, S. I. and Keller, J. B. (1972). Flow of a viscous fluid through an elastic tube with application to blood flow J. Theor. Biology. 35: 299–313.CrossRefGoogle Scholar
  69. Shapiro, A. H. (1977). Steady flow in collapsible tubes, J. Biomech. Engng. Trans. ASME 99 (K): 126–147.CrossRefGoogle Scholar
  70. Shepherd, J. T., and Vanhoutte, P. M. (1975) Veins and their Control. Saunders, London, Philadephia.Google Scholar
  71. Singhal, S., Henderson, R., Horsfield, K., Harding, K. and Cumming, G. (1973). Morphometry of the human pulmonary arterial tree Circulation Res. 33: 190–197.CrossRefGoogle Scholar
  72. Smith, F. T. (1977). Upstream interactions in channel flows J. Fluid Mechanics. 79: 631–655.ADSzbMATHCrossRefGoogle Scholar
  73. Sobin, S. S., Fung, Y. C., Tremer, H. and Rosenquist, T. H. (1972). Elasticity of the pulmonary interalveolar microvascular sheet in the cat Circulation Res. 30: 440–450.CrossRefGoogle Scholar
  74. Sobin, S. S., Lindal, R. G., Fung, Y. C. and Tremer, H. M. (1978). Elasticity of the smallest noncapillary pulmonary blood vessels in the cat. Microvas. Res. 15 : 57–68.CrossRefGoogle Scholar
  75. Sobin, S. S., Fung, Y. C., Lindal, R. G., Tremer, H. M. and Clark, L. (1980). Topology of pulmonary arterioles, capillaries and venules in the cat Microvas. Res. 19: 217–233.CrossRefGoogle Scholar
  76. Strahler, A. N. (1964). Quantitative geomorphology of drainage basin and channel networks. In Handbook of Applied Hydrology: Compedium of Water Resources Technology (Chow, V. T., ed.) McGraw-Hill, New York.Google Scholar
  77. Szidon, J. P., Ingram, R. H. and Fishman, A. P. (1968). Origin of the pulmonary venous flow pulse Amer. J. Physiol. 214: 10–14.Google Scholar
  78. Timoshenko, S. and Gere, J. M. (1961) Theory of Elastic Stability. McGraw—Hill, New York, 1st ed. 1936., 2nd ed. 1961.Google Scholar
  79. Ur. A. and Gordon, M. (1970). Origin of Korotkoff sounds Am. J. Physiol. 218: 524–529.Google Scholar
  80. Weibel, E. R. (1963) Morphometry of the Human Lung. Springer-Verlag, Berlin.Google Scholar
  81. Wexler, L., Bergel, D. H., Gabe, I. T., Makin, G. S., and Mills, C. J. (1968). Velocity of blood flow in normal human venae cavae Circulation Res. 23 : 349–359.CrossRefGoogle Scholar
  82. Wild, R., Pedley, T. J. and Riley, D. S. (1977). Viscous flow in collapsible tubes of slowly-varying elliptical cross-section J. Fluid Mech. 81 : 273–294.ADSzbMATHCrossRefGoogle Scholar
  83. Wood, J. E. (1965) The Veins: normal and abnormal functions. Little, Brown, Boston, 224 pp.Google Scholar
  84. Yen, R. T. and Foppiano, L. (1981). Elasticity of small pulmonary veins in the cat J. Biomech. Engng. Trans. ASME 103 : 38–42.CrossRefGoogle Scholar
  85. Yen, R. T., Fung, Y. C. and Bingham, N. (1980). Elasticity of small pulmonary arteries in the cat J. Biomech. Engng. Trans. ASME 102: 170–177.CrossRefGoogle Scholar
  86. Yen, R. T., Zhuang, F. Y., Fung, Y. C., Ho, H. H., Tremer, H. and Sobin, S. S. (1983). Morphometry of cat’s pulmonary venous tree J. Appl. Physiol. In press.Google Scholar
  87. Young, D. F. and Tsai, F. Y. (1973). Flow characteristics in models of arterial stenosis. I. Steady flow J. Biomechanics. 6: 395–410.CrossRefGoogle Scholar
  88. Young, D. F., Cholvin, N. R., and Roth, A. C. (1975). Pressure drop across artificially induced stenoses in the femoral arteries of dogs Circ. Res. 36: 735–743.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Y. C. Fung
    • 1
  1. 1.University of CaliforniaSan Diego, La JollaUSA

Personalised recommendations