Skip to main content

Blood Flow in Arteries

  • Chapter
Biodynamics

Abstract

The larger systemic arteries, shown in Fig. 3.1:1, conduct the blood from the heart to the peripheral organs. Their dimensions are given in Table 3.1:1. In man, the aorta originates in the left ventricle at the aortic valve, and almost immediately curves about 180°, branching off to the head and upper limbs. It then pursues a fairly straight course down through the diaphragm to the abdomen and legs. The aortic arch is tapered, curved, and twisted (i.e., it does not lie in a plane). The other arteries have a constant diameter between branches, but every time a daughter branch forks off the main trunk the diameter of the aorta is reduced. Overall, the aorta may be described as tapered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • In addition to articles referred to in the text, the following literature is listed: Books: Aperia (1940), Attinger (1964), Bauereisen (1971), Bergel (1972), Bohr et al. (1980), Brankov (1981), Burton (1965), Caro et al. (1978), Folkow and Neil (1971), Fung (1977, 1981), Fung et al. (1972), Knets et al. (1980), Lighthill (1975, 1978), McDonald (1960, 1974), Oka (1974), Patel and Vaishnav (1980), Pedley (1980), Poorinya and Kasyanov (1980), Rushmer (1970), Wetterer and Kenner (1968).

    Google Scholar 

  • Classics: Euler (1775), Frank (1899; 1926, 1930), Harvey (1628), Joukowsky (1900), Lamb (1897), Moens (1878), Resal (1876), Weber & Weber (1825), Weber (1850), Witzig (1914), Womersley (1957), Young (1808, 1809).

    Google Scholar 

  • Surveys: Fung (1970), Jones et al. (1971), Kenner (1972), Klip (1962), Lambossy (1950, 1951), Müller (1951, 1959), Rubinow and Keller (1972), Wiedeman (1963).

    Google Scholar 

  • On A therosis, A therogenesis: Caro et al. (1969, 1971, 1973), Nerem (1981), Nerem et al. (1972, 1974), Schneiderman et al. (1979), Oka (1981).

    Google Scholar 

  • On Measurements and Instrumentation: Agrawal et al. (1978), Atabek et al. (1975), Deshpande et al. (1976), Deshpande and Giddens (1980), Fry et al. (1964), Gabe (1965), Holenstein et al. (1980), Klip (1958, 1967), Ling et al. (1968, 1973), Lutz et al. (1977), Milnor and Bertram (1978), Patel et al. (1964, 1966), Young and Tsai (1973).

    Google Scholar 

  • On Nonlinear Effects: Atabek (1968, 1980), Atabek et al. (1975), Pedley (1980) Lambert (1958), Ling et al. (1968), Ling and Atabek (1972), Yao and Berger (1975).

    Google Scholar 

  • On Wave Propagation: Anliker (1972), Anliker et al. (1966, 1968, 1969, 1971, 1977), Atabek et al. (1961, 1962, 1966), Attinger (1964), Attinger et al. (1966), Branson, (1945), Cox (1968, 1970), Davis (1976), Evans (1962), Hardung (1962), Holenstein et al. (1980), Jacobs (1953), Krovetz (1965), Landowne (1958), Lee (1966), Maxwell & Anliker (1968), Mirsky (1965), Mirsky et al. (1974), Skalak (1966, 1972), Smith (1975, 1976), Stettler et al. (1980), Streeter et al. (1963), Taylor (1959, 1965, 1966), Van der Werff (1973), Weiss (1964).

    Google Scholar 

  • On Windkessel Theory: Aperia (1940), Elcrat and Lieberstein (1967), Freis and Heath (1964), Hamilton and Dow (1939).

    Google Scholar 

  • Agrawal, Y., Talbot, L. and Gong, K. (1978). Laser anemometer study of flow development in curved circular pipes. J. Fluid Mechanics 85: 497–518.

    Article  ADS  Google Scholar 

  • Anliker, M. (1972). Toward a nontraumatic study of the circulatory system. In Biomechanics: Its Foundations and Objectives, Prentice-Hall, Englewood Cliffs, N. J., pp. 337–379.

    Google Scholar 

  • Anliker, M. and Maxwell, J. A. (1966). The dispersion of waves in blood vessels. In Biomechanics (Y. C. Fung ed.), Amer. Soc. Mech. Engrs., New York, pp. 47–67.

    Google Scholar 

  • Anliker, M. and Raman, K. R. (1966). Korotkoff sounds at diastole-a phenomenon and dynamic instability of fluid-filled shells. International J. of Solids and structures, 2: 467–492.

    Article  Google Scholar 

  • Anliker, M., Histand, M. B. and Ogden, E. (1968). Dispersion and attenuation of small artificial pressure waves in canine aorta. Circulation Research 23: 539–551.

    Article  Google Scholar 

  • Anliker, M., Moritz, W. E. and Ogden, E. (1968). Transmission characteristics of axial waves in blood vessels. J. Biomechanics 1: 235–246.

    Article  Google Scholar 

  • Anliker, M., Wells, M. K. and Ogden, E. (1969). The transmission characteristics of large and small pressure waves in the abdominal vena cava. IEEE Trans. on BioMedical Eng. BME-16: 262–273.

    Article  Google Scholar 

  • Anliker, M., Rockwell, R. L. and Ogden, E. (1971). Nonlinear analysis of flow pulses and shock waves in arteries. Z. angew. Math. Physics 22: 217–246, 563–581.

    Article  Google Scholar 

  • Anliker, M., Casty, M., Friedli, P., Kubli, R. and Keller, H. (1977). Noninvasive measurement of blood flow. In Cardiovascular Flow Dynamics and Measurements(N. H. C. Hwang and N. A. Norman, eds.), Univ. Park Press, Baltimore, Md., pp. 43–88.

    Google Scholar 

  • Aperia, A. (1940). Hemodynamical Studies. Skandinavisches Archiv für Physiologie, Suppl. 16 to Vol. 83.

    Google Scholar 

  • Atabek, H. B. (1962). Development of flow in the inlet length of a circular tube starting from rest. Z. angew. Math. Phys. 13: 417–430.

    Article  MATH  Google Scholar 

  • Atabek, H. B. (1968). Wave propagation through a viscous fluid contained in a tethered, initially stressed, orthotropic elastic tube. Biophysical J. 8: 626–649.

    Article  ADS  Google Scholar 

  • Atabek, H. B. (1980). Blood flow and pulse propagation in arteries. In Basic Hemodynamics and Its Role in Disease Processes(Patel, D. J. and Vaishnav, R. N. eds.), University Park Press, Baltimore, Md., Ch. 7, pp. 255–361.

    Google Scholar 

  • Atabek, H. B. and Chang, C. C. (1961). Oscillatory flow near the entry of a circular tube. Z. angew. Math. Physiol. 12: 185–201.

    Article  MathSciNet  MATH  Google Scholar 

  • Atabek, H. B. and Lew, H. S. (1966). Wave propagation through a viscous incompressible fluid contained in an initially stressed elastic tube. Biophysical J. 6: 481–502.

    Article  ADS  Google Scholar 

  • Atabek, H. B., Ling, S. C. and Patel, D. J. (1975). Analysis of coronary flow fields in thoracotomized dogs. Circulation Res. 37: 752–761.

    Article  Google Scholar 

  • Attinger, E. O. (1964). Flow patterns and vascular geometry. In Pulsatile Blood Flow, (E. O. Attinger ed.), McGraw Hill, New York, Ch. 9, pp. 179–220.

    Google Scholar 

  • Attinger, E. O., Sugawara, H., Navarro, A. and Anne, A. (1966). Pulsatile flow patterns in distensible tubes. Circulation Res 18: 447–456.

    Article  Google Scholar 

  • Attinger, E. O., Sugawara, H., Navarro, A., Riceeto, A. and Martin, R. (1966). Pressureflow relations in dog arteries. Circulation Res. 19: 230–246.

    Article  Google Scholar 

  • Bauereisen, E. (ed.)(1971) Physiologie des Kreislaufs. Band 1. Arteriensystem, Capillarbett, Organkreislauf; Fetal-und PlacentarkreislaufSpringer-Verlag, Heidelberg.

    Google Scholar 

  • Bergel, D. H. (ed.) (1972). Cardiovascular Fluid Dynamics. Vols. 1 & 2. Academic Press, New York.

    Google Scholar 

  • Bohr, D. F., Somlyo, A. P., and Sparks, H. V., Jr. (eds.) (1980). Handbook of Physiology, Sec. 2. The Cardiovascular System. Vol. 2, Vascular Smooth Muscles, American Physiological Society, Bethesda, Md.

    Google Scholar 

  • Boussinesq, J. (1891). Maniere dont les vitesses, se distrib. depui l’entree-Moindre longueur d’un tube circulaire, pour qu’un regime uniforme s’y etablisse. Comptes Rendus, 113: 9, 49.

    MATH  Google Scholar 

  • Brankov, G. (1981). Osnovi Biomechaniki. (Basic Biomechanics)Izdatelstvo “MIR”, Moscow.

    Google Scholar 

  • Branson, H. (1945). The flow of a viscous fluid in an elastic tube: a model of the femoral artery. Bull. Math. Biophysics 7: 181–188.

    Article  MathSciNet  Google Scholar 

  • Burton, A. C. (1965). Physiology and Biophysics of the Circulation. Year Book Medical Publishers, Chicago, Ill.

    Google Scholar 

  • Caro, C. G., Fitzgerald, J. M. and Schroter, R. C. (1969). Arterial wall shear and distribution of early atheroma in man. Nature. 223: 1159–1161.

    Article  ADS  Google Scholar 

  • Caro, C. G., Fitzgerald, J. M. and Schroter, R. C. (1971). Atheroma and arterial wall shear. Proc. Roy. Soc. London, B 177: 109–159.

    Article  ADS  Google Scholar 

  • Caro, C. G., and Nerem, R. M. (1973). Transport of 14C-4-Cholesterol between serum and wall in the perfused dog common carotid artery. Circulation Res. 32: 187–205.

    Article  Google Scholar 

  • Caro, C. G., Pedley, T. J., Schroter, R. C., and Seed, W. A. (1978). The Mechanics of the Circulation. Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Cox, R. H. (1968). Wave propagation through a Newtonian fluid contained within a thick-walled, viscoelastic tube. Biophys. J. 8: 691–709.

    Article  ADS  Google Scholar 

  • Cox, R. H. (1970). Blood flow and pressure propagation in the canine femoral artery. J. Biomech. 2: 131–150.

    Article  Google Scholar 

  • Davis, S. H. (1976). The stability of time-periodic flows. Annual Review offluid Mechanics, 8: 57–74.

    Article  ADS  Google Scholar 

  • Deshpande, M. D., Giddens, D. P., and Mabon, R. F. (1976). Steady laminar flow through modelled vascular stenosis. J. Biomechanics 9: 165–174.

    Article  Google Scholar 

  • Deshpande, M. D. and Giddens, D. P. (1980). Turbulence measurements in a constricted tube. J. Fluid Mechanics 97: 65–90.

    Article  ADS  Google Scholar 

  • Elcrat, A. R. and Lieberstein, H. M. (1967). Asymptotic uniqueness for elastic tube flows satisfying a windkessel condition. Math. Biosci. 1: 397–411.

    Article  MATH  Google Scholar 

  • Euler, L. (1775). Principia pro motu sanguins per arterias determinado. Opera posthuma mathematica et physicaanno 1844 detecta, ediderunt P. H. Fuss et N. Fuss. Petropoli, Apud Eggers et socios, Vol. 2, pp. 814–823.

    Google Scholar 

  • Evans, R. L. (1962). Pulsatile flow in vessels whose distensibility and size vary with site. Phys. Med. Biol. 7: 105–116.

    Article  Google Scholar 

  • Evans, R. L. (1962). A unifying approach to blood flow theory. J. Theoretical Biophysics 3: 392–411.

    Google Scholar 

  • Folkow, B. and Neil, E. (1971). Circulation, Oxford Univ. Press, New York.

    Google Scholar 

  • Frank, O. (1899). Die Grundform des arteriellen pulses. Zeitschrift für Biologie, 37: 483–526.

    Google Scholar 

  • Frank, O. (1926). Die Theorie der pulswellen. Zeitschrift für Biologie, 85: 91–130.

    Google Scholar 

  • Frank, O. (1930). Schatzung des Schlagvolumens des menschlichen Herzens auf Grund der Wellen-und Weinkessel theorie. Zeitschrift für Biologie, 90: 405–409.

    Google Scholar 

  • Freis, E. D. and Heath, W. C. (1964). Hydrodynamics of aortic blood flow. Circulation Res. 14: 105–116.

    Article  Google Scholar 

  • Fronek, A., Coel, M. and Bernstein, E. F. (1978). Post-occlusive hyperemia and the toe-pulse-reappearance time in the evaluation of arterial occlusive disease. In Non-Invasive Diagnostic Techniques in Vascular Disease(Bernstein, E. F. ed.), Mosby, St. Louis.

    Google Scholar 

  • Fry, D. L., Griggs, D. M., Jr. and Greenfield, J. C. Jr. (1964). In vivo studies of pulsatile blood flow: the relationship of the pressure gradient to the blood velocity. In Pulsatile Blood Flow(Attinger, E. O. ed.), McGraw-Hill, New York, Chap. 5, pp. 101–114.

    Google Scholar 

  • Fung, Y. C. (1970). Biomechanics: A survey of the blood flow problem. In Advances of Applied Mechanics(Yih, C. S. ed.), Academic Press, New York, Vol. II. pp. 65–130.

    Google Scholar 

  • Fung, Y. C. (1977). A First Course in Continuum Mechanics. 2nd edn. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Fung, Y. C. (1981). Biomechanics: Mechanical Properties of Living Tissues. Springer- Verlag, New York.

    Google Scholar 

  • Fung, Y. C., Perrone, N. and Anliker, M. (1972). Biomechanics: Its Foundations and Objectives. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Fung, Y. C., Fronek, K. and Patitucci, P. (1979). On pseudo-elasticity of arteries and the choice of its mathematical expression. Am. J. of Physiol., 237(5): H620–H631.

    Google Scholar 

  • Gabe, I. T. (1965). An analogue computer deriving oscillatory arterial blood flow from the pressure gradient. Phys. Med. Biol. 10: 407–415.

    Article  Google Scholar 

  • Hamilton, W. F. and Dow, P. (1939). An experimental study of the standing waves in the pulse propagated through the aorta. Am. J. Physiol. 125: 48–59.

    Google Scholar 

  • Hardung, V. (1962). Propagation of pulse waves in viscoelastic tubing. In Handbook of Physiology, Sec. 2, Circulation(W. F. Hamilton, ed.), Am. Physiological Society, Washington, D.C., Ch. 7, pp. 107–135.

    Google Scholar 

  • Harvey, W. (1628). Exercitatis anatomica de motu cordis et sanguinis in animalibus. An English translation with annotations by D. C. Leake, 4th ed. Thomas, Springfield, Ill., (1958).

    Google Scholar 

  • Holenstein, R., Niederer, P. and Anliker, M. (1980). A viscoelastic model for use in predicting arterial pulse waves. J. Biomechanical Eng. 102: 318–325.

    Article  Google Scholar 

  • Jacobs, R. B. (1953). On the propagation of a disturbance through a viscous liquid flowing in a distensible tube of appreciable mass. Bull. Math. Biophysics 5: 395–409.

    Article  MathSciNet  Google Scholar 

  • Jones, E., Anliker, M., and Chang, I. D. (1971). Effects of viscosity and constraints on the dispersion and dissipation of waves in large blood vessels. I & II. Biophysical J. 11, 1085–1120, 1121–1134.

    Article  ADS  Google Scholar 

  • Jones, R. T. (1969). Blood flow. Annual Review of Fluid Mechanics, 1: 223–244.

    Article  ADS  Google Scholar 

  • Joukowsky, N. W. (1900). Ueber den hydraulischen Stoss in Wasserheizungsrohren. Memoires de l’Academie Imperiale des Science de St. Petersburg, 8 series, Vol. 9, No. 5.

    Google Scholar 

  • Kamiya, A., and Togawa, T. (1972). Optimal branching of the vascular tree. (Minimum volume theory) Bull. Math. Biophysics, 34: 431–438.

    Article  Google Scholar 

  • Kenner, T. (1972). Flow and pressure in the arteries. In Biomechanics: Its Foundations and Objectives. (Fung, Y. C., Perrone, N. and Anliker, M. eds.), Prentice-Hall, Englewood Cliffs, N.J., pp. 381–434.

    Google Scholar 

  • King, A. L. (1947). On a generalization of the Poiseuille law. Am. J. Physiol. 15: 240–242.

    Article  ADS  Google Scholar 

  • King, A. L. (1947). Waves in elastic tubes: velocity of the pulse wave in large arteries. J. Appl. Phys. 18: 595–600.

    Article  ADS  Google Scholar 

  • Kivity, Y. and Collins, R. (1974). Nonlinear wave propagation in viscoelastic tubes: application to aortic rupture. J. of Biomechanics 7: 1–10.

    Article  Google Scholar 

  • Klip, W. (1958). Difficulties in the measurement of pulse wave velocity. Am. Heart J. 56: 806–813.

    Article  Google Scholar 

  • Klip, W. (1962). Velocity and Damping of the Pulse Wave. Martinus Nijhoff, Hague.

    Google Scholar 

  • Klip, W. (1967). Formulas for phase velocity and damping of longitudinal waves in thick-walled viscoelastic tubes. J. Appl. Physics. 38: 3745–3755.

    Article  ADS  Google Scholar 

  • Knets, E. V., Pfafrod, G. O., Saulgozis, U. J. (14. B. KHeTC, F. O. ΠlΦaΦ pod, 10,)Ж. CayΛ. ro3иC). Deformation and Failure of Solid Biological Tissues (Deformerovanie e Razryshenie Tverdih Biologichskeh Tkanee), Riga, “zenatne”.

    Google Scholar 

  • Korteweg, D. J. (1878). Ueber die Fortpflanzungesgeschwindigkeit des Schalles in elastischen Rohren. Ann. der Physik. u. Chemie. 5(3): 525–542.

    Article  ADS  MATH  Google Scholar 

  • Krovetz, L. J. (1965). The effect of vessel branching on haemodynamic stability. Phys. in Med. and Biol. 10: 417–427.

    Article  ADS  Google Scholar 

  • Kuchar, N. R. and Ostrach, S. (1966). Flows in the entrance regions of circular elastic tubes. In Biomedical Fluid Mechanics Symposium, Amer. Soc. Mech. Engrs., pp. 45–69.

    Google Scholar 

  • Lamb, H. (1897–1898). On the velocity of sound in a tube, as affected by the elasticity of the walls. Phil. Soc. of Manchester Memoirs and Proc., lit. A, 42: 1–16.

    Google Scholar 

  • Lambert, J. W. (1958). On the nonlinearities of fluid flow in nonrigid tubes. J. Franklin Inst. 266: 83–102.

    Article  MathSciNet  Google Scholar 

  • Lambossy, P. (1950, 1951). Apercu historique et critique sur le probleme de la propagation des ondes dans un liquide compressible enferme dan un tube elastique. Helv. Physiol. Pharm. Acta. 8: 209–227, 9: 145–161.

    Google Scholar 

  • Lanczos, C. (1952). Introduction. In Tables of Chebyshev Polynomials. Nat. Bureau of Standards, Appl. Math., Ser. 9, U.S. Govt. Printing Office, Washington, D.C., pp. 7–9.

    Google Scholar 

  • Landowne, M. (1958). Characteristics of impact and pulse wave propagation in brachial and radial arteries. J. Appl. Physiol. 12: 91–97.

    Google Scholar 

  • Lee, J. S. (1966). The pressure-flow relationship in long-wave propagation in large arteries. In Biomechanics (Fung, Y. C. ed.), ASME Symposium, American Society of Mech. Engineers, New York, pp. 96–120.

    Google Scholar 

  • Lew, H. S., and Fung, Y. C. (1970). Entry flow into blood vessels at arbitrary Reynolds number. J. Biomech. 3: 23–38.

    Article  Google Scholar 

  • Lighthill, J. (1975). Mathematical Biofluiddynamics. Society for Industrial and Applied Mathematics, Philadelphia, Pa.

    Book  MATH  Google Scholar 

  • Lighthill, M. J. (1978). Waves in Fluids. Cambridge University Press.

    MATH  Google Scholar 

  • Ling, S. C., Atabek, H. B., Fry, D. L., Patel, D. J. and Janicki, J. S. (1968). Application of heated film velocity and shear probes to hemodynamic studies. Circulation Res. 23: 789–801.

    Article  Google Scholar 

  • Ling, S. C. and Atabek, H. B. (1972). A nonlinear analysis of pulsatile flow in arteries. J. Fluid Mechanics 55: 493–511.

    Article  ADS  MATH  Google Scholar 

  • Ling, S. C., Atabek, H. B., Letzing, W. G. and Patel, D. J. (1973). Nonlinear analysis of aortic flow in living dogs. Circulation Res. 33: 198–212.

    Article  Google Scholar 

  • Lutz, R. J., Cannon, J. N., Bischoff, K. B., and Dedrick, R. L. (1977). Wall shear stress distribution in a model canine artery during steady flow. Circulation Res. 41: 391–399.

    Article  Google Scholar 

  • Matunobu, Y. and Arakawa, M. (1974). Model experiments on the post-stenotic dilatation in blood vessels. Biorheology 11: 457–464.

    Google Scholar 

  • Maxwell, J. A. and Anliker, M. (1968). The dissipation and dispersion of small waves in arteries and veins with viscoelastic wall properties. Biophysical J. 8: 920–950.

    Article  ADS  Google Scholar 

  • McCutcheon, E. P. and Rushmer, R. F. (1967). Korotkoff sounds: An experimental critique. Circulation Res. 20: 149–161.

    Article  Google Scholar 

  • McDonald, D. A. (1968). Regional pulse wave-velocity in the arterial tree (dog). J. Appl. Physiol. 24: 73–78.

    Google Scholar 

  • McDonald, D. A. (1960, 1974). Blood Flow in Arteries. Williams & Wilkins, Baltimore, Md. 1st ed, 1960, 2nd ed., 1974.

    Google Scholar 

  • Milnor, W. R. and Bertram, C. D. (1978). The relation between arterial viscoelasticity and wave propagation in the canine femoral artery in vivo. Circulation Res. 43: 870–879.

    Article  Google Scholar 

  • Mirsky, I. (1965). Wave propagation in transversely isotropic circular cylinders. Part 1: Theory. J. Acoust. Soc. Amer. 37: 1016–1025.

    Article  MathSciNet  ADS  Google Scholar 

  • Mirsky, I., Ghista, D. N. and Sandler, H. (eds.) (1974). Cardiac Mechanics: Physiological, Clinical, and Mathematical Considerations. John Wiley & Sons, New York.

    Google Scholar 

  • Moens, A. I. (1878). Die Pulskwive. Brill, Leiden, Netherlands.

    Google Scholar 

  • Morgan, G. W. and Kiely, J. P. (1954). Wave propagation in a viscous liquid contained in a flexible tube. J. Acoust. Soc. Amer, 26(3): 323–328.

    Article  MathSciNet  ADS  Google Scholar 

  • Morgan, G. W. and Ferrante, W. R. (1955). Wave propagation in elastic tubes filled with streaming liquid. J. Acoust. Soc. Amer. 27(4): 715–725.

    Article  MathSciNet  ADS  Google Scholar 

  • Müller, V. A. (1951). Ueber die Abhängigkeit der Fortpflanzungsgeschwindigkeit und der Dämpfung der Druckwellen in dehnbaren Rohren von deren Wellenlänge. Helvetica Physiologica et Pharma. Acta 9: 162–176.

    Google Scholar 

  • Müller, V. A. (1959). Die Mehrschichtige Rohrwand als Modell für die Aorta. Helv. Physiol. Pharmacol. Acta 17: 131–145.

    Google Scholar 

  • Murray, C. D. (1926). The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc. Nat. Acad. Sci. U.S.A., 12: 207–214.

    Article  ADS  Google Scholar 

  • Murray, C. D. (1926). The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Also, J. Gen. Physiol. 9: 835–841.

    Article  Google Scholar 

  • Nerem, R. M. (ed.) (1981). Hemodynamics in the arterial wall. J. Biomech. Eng. 103: Introduction p. 171. Technical Papers pp. 172–212.

    Article  Google Scholar 

  • Nerem, R. M., Seed, W. A. and Wood, N. B. (1972). An experimental study of the velocity distribution and transition to turbulence in the aorta. J. Fluid Mechanics 52: 137–160.

    Article  ADS  Google Scholar 

  • Nerem, R. M., Rumberger, J. A., Gross, D. R., Hamlin, R. L. and Geiger, G. L. (1974). Hot-film anemometer velocity measurements of arterial blood flow in horses Circulation Res. 34, 193–203.

    Article  Google Scholar 

  • Oka, S. (1974). Rheology-Biorheology. Syokabo, Tokyo. (In Japanese).

    Google Scholar 

  • Patel, D. J., Greenfield, J. C. Jr., and Fry, D. L. (1964). In vivo pressure-length radius relationship of certain blood vessels in man and dog. In Pulsatile Blood Flow(E. O. Attinger, ed.), McGraw-Hill, New York, pp. 293–305.

    Google Scholar 

  • Patel, D. J., and Fry, D. L. (1966). Longitudinal tethering of arteries in dogs. Circulation Res. 19: 1011–1021.

    Article  Google Scholar 

  • Patel, D. J. and Vaishnav, R. N. (eds.) (1980). Basic Hemodynamics and Its Role in Disease Process, University Park Press, Baltimore, Md.

    Google Scholar 

  • Pedley, T. J. (1980). The Fluid Mechanics of Large Blood Vessels. Cambridge University Press, London.

    Book  MATH  Google Scholar 

  • Poorinya, B. A. and Kasyanov, V. A. (1980). Biomechanika Kropnich Krovenosnich Sosoodov Cheloveka (Biomechanics of Large Blood Vessels of Man). Riga, “Zenatne”.

    Google Scholar 

  • Resal, H. (1876). Sur les petits movements d’un fluid incompressible dans un tuyau elastique. Comptes Rendus, Academie des Sciences, 82: 698–699.

    Google Scholar 

  • Rosen, R. (1967). Optimality Principles in Biology. Butterworth, London.

    MATH  Google Scholar 

  • Rubinow, S. I. and Keller, J. B. (1972). Flow of a viscous fluid through an elastic tube with applications to blood flow. J. Theo. Biol. 35(2): 299–313.

    Article  Google Scholar 

  • Rushmer, R. F. (1955, 1961, 1970). Cardiovascular Dynamics. Saunders, Philadelphia.

    Google Scholar 

  • Schiller, L. (1922). Die Entwicklung der laminaren Geschwindigkeitsverteilung und ihre Bedeutung für Zahigkeitsmessungen. Z. angew. Math. Mech. 2: 96–106.

    Article  Google Scholar 

  • Schlichting, H. (1968). Boundary Layer Theory, 6th ed., McGraw-Hill, New York.

    Google Scholar 

  • Schneiderman, G., Ellis, C. G., and Goldstick, T. K. (1979). Mass transport to walls of stenosed arteries: variation with Reynolds number and blood flow separation. Biomechanics J. 12: 869–878.

    Article  Google Scholar 

  • Skalak, R. (1966). Wave propagation in blood flow. In Biomechanics Symposium (Y. C. Fung, ed.), American Soc. of Mech. Engrs., New York, pp. 20–40.

    Google Scholar 

  • Skalak, R. (1972). Synthesis of a complete circulation. In Cardiovascular fluid Dynamics(D. H. Bergel, ed.), Vol. 2, Chap. 19, Academic Press, New York, pp. 341–376.

    Google Scholar 

  • Skalak, R. and Stathis, T. (1966). A porous tapered elastic tube model of a vascular bed. In Biomechanics Symposium (Y. C. Fung, ed.), Amer. Soc. of Mech. Engrs., New York, pp. 68–81.

    Google Scholar 

  • Smith, F. T. (1975). Pulsatile flow in curved pipes. J. Fluid Mechanics, 71: 15–42.

    Article  ADS  MATH  Google Scholar 

  • Smith, F. T. (1976). Pipeflows distorted by non-symmetric indentation or branching. Mathematika. 23: 62–83.

    Article  MATH  Google Scholar 

  • Stettler, J. C., Niederer, P. and Anliker, M. (1980). Theoretical analysis of arterial hemodynamics including the influence of bifurcations. Part I. Mathematical Model and prediction of normal pulse patterns. Annals of Biomedical Eng. 9: 145–164. Part II. (with Casty, M.) Comparison with noninvasive measurements of flow patterns in normal and pathological cases, loc cit., 165–175.

    Article  Google Scholar 

  • Streeter, V. L., Keitzer, W. F. and Bohr, D. F. (1963). Pulsatile pressure and flow through distensible vessels. Circulation Res. 13: 3–20.

    Article  Google Scholar 

  • Szegö, G. (1939). Orthogonal Polynomials, 4th ed. American Math. Soc. Colloquium Publication, Vol. 23.

    Google Scholar 

  • Targ, S. M. (1951). Basic Problems of the Theory of Laminar Flows. Moskva. (In Russian).

    Google Scholar 

  • Taylor, M. G. (1959). An experimental determination of the propagation of fluid oscillations in a tube with a viscoelastic wall. Phys. Med. Biol. 4: 63–82.

    Article  Google Scholar 

  • Taylor, M. G. (1965). Wave travel in a non-uniform transmission line, in relation to pulses in arteries arteries. Phys. Med. Biol. 10: 539–550.

    Article  Google Scholar 

  • Taylor, M. G. (1966). Use of random excitation and spectral analysis in the study of frequency-dependent parameters of the cardiovascular system. Circulation Res. 18: 585–595.

    Article  Google Scholar 

  • Taylor, M. G. (1966). Input impedance of an assembly of randomly branching elastic tubes. Biophysical J. 6: 29–51., 6: 697–716.

    Article  ADS  Google Scholar 

  • Van der Werff, T. J. (1973). Periodic method of characteristics. J. Comp. Phys. 11: 296–305.

    Article  ADS  MATH  Google Scholar 

  • Walawender, W. P. and Chen, T. Y. (1975). Blood flow in tapered tubes. Microvas. Res. 9: 190–205.

    Article  Google Scholar 

  • Weber, E. H. and Weber, W. (1825). Wellenlehre auf experimente begrundet;oder, Über die Wellen tropfbarerfüssigkeiten mit Anwendung aufdie Schall-und- lichtwell. Fleischer, Leipzig.

    Google Scholar 

  • Weber, E. H. (1850). Ueber die Anwendung der Wellenlehre auf die Lehre vom Kreislaufe des blutes und insbesondere auf die Pulslehre. Berichte uber die Verhandlungen der königl sachsischen Gesellschaft der Wissenschaft zu Leipzig, Mathematischphysische Klasse.

    Google Scholar 

  • Weiss, G. H. (1964). On the theory of blood flow in tapered arteries. Biorheology 2: 153–158.

    Google Scholar 

  • Werlé, H. (1974). Le Tunnel Hydrodynamique au Service de la Recherche Aérospatiale. Publication No. 156, ONERA, France.

    Google Scholar 

  • Wetterer, E. and Kenner, T. (1968). Grundlagen der Dynamik des Arterienpulses. Springer-Verlag, Berlin.

    Google Scholar 

  • Wetterer, E., Bauer, R. D., and Busse, R. (1978). New ways of determining the propagation coefficient and the viscoelastic behavior of arteries in situ. In The Arterial System(Bauer, R. D. & Busse, R. ed.), Springer-Verlag, Berlin, pp. 35–47.

    Chapter  Google Scholar 

  • Wiedeman, M. P. (1963). Dimensions of blood vessels from distributing artery to collecting vein. Circulation Res. 12: 375–378.

    Article  Google Scholar 

  • Witzig, K. (1914). Über erzwungene Wellenbewegungen zaher, inkompressibler Flüssigkeiten in elastischen Rohren. Inaugural Dissertation, Universitat Bern, K. J. Wyss, Bern.

    Google Scholar 

  • Womersley, J. R. (1955). Method for the calculation of velocity, rate of flow, and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127: 553–563.

    Google Scholar 

  • Womersley, J. R. (1955). Oscillatory motion of a viscous liquid in a thin-walled elastic tube-I: the linear approximation for long waves. Phil. Mag. 46(Ser. 7): 199–221.

    MathSciNet  MATH  Google Scholar 

  • Womersley, J. R. (1957). The mathematical analysis of the arterial circulation in a state of oscillatory motion. Wright Air Development Center, Technical Report WADCTR-56–614, 123pp.

    Google Scholar 

  • Womersley, J. R. (1958). Oscillatory flow in arteries. I. The constrained elastic tube as a model of arterial flow and pulse transmission. II. The reflection of the pulse wave at junctions and rigid inserts in the arterial system. Phys. Med. Biol. 2: 177–187, 313–323.

    Google Scholar 

  • Wylie, E. R. (1966). Flow through tapered tubes with nonlinear wall properties. In Biomechanics Sympoisum(Fung, Y. C. ed.), Amer. Soc. Mech. Engrs., New York, pp. 82–95.

    Google Scholar 

  • Yao, L. S. and Berger, S. A. (1975). Entry flow in a curved pipe. J. Fluid Mechanics. 67: 177–196.

    Article  ADS  MATH  Google Scholar 

  • Young, D. F. and Tsai, F. Y. (1973). Flow characteristics in models of arterial stenosis. I. Steady flow. J. Biomechanics, 6: 395–410.

    Article  Google Scholar 

  • Young, T. (1808). Hydraulic investigations, subservient to an intended Croonian lecture on the motion of the blood. Phil. Trans. Roy. Soc. London, 98: 164–186.

    Article  Google Scholar 

  • Young, T. (1809). On the functions of the heart and arteries. Phil. Trans. Roy. Soc. London, 99: 1–31.

    Google Scholar 

  • Zamir, M. (1976). The role of shear forces in arterial branching. J. General Biology 67: 213–222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fung, Y.C. (1984). Blood Flow in Arteries. In: Biodynamics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3884-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3884-1_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3886-5

  • Online ISBN: 978-1-4757-3884-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics