Advertisement

Steady Stokes Flow in Bounded Domains

  • Giovanni P. Galdi
Part of the Springer Tracts in Natural Philosophy book series (STPHI, volume 38)

Abstract

We now undertake the study of the mathematical properties of the motion of a viscous incompressible fluid. We shall begin with the simplest situation, namely, that of a steady, indefinitely slow motion occurring in a bounded region Ω. The hypothesis of slow motion means that the ratio
$$\frac{{\left| {v\cdot \nabla v} \right|}}{{\left| {v\nabla v} \right|}}$$
of inertial to viscous forces is vanishingly small, so that we can disregard the nonlinear term into the full (steady) Navier-Stokes equations (I.0.31).

Keywords

Weak Solution Bounded Domain Fundamental Solution Pressure Field Representation Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Korn, A., 1908, Allgemeine Lösung des Problems Kleiner, Stationären Bewegungen in Reibenden Flüssigkeiten, Rend. Circ. Mat. Palermo, 25, 253–271 [Notes for IV]MathSciNetzbMATHCrossRefGoogle Scholar
  2. Boggio, T., 1910, Sul Moto Stazionario di una Sfera in un Liquido Viscoso, Rend. Cire. Mat. Palermo, 30, 65–81 [Notes for IV, Notes for viGoogle Scholar
  3. Bogovskiï, M.E., 1979, Solution of the First Boundary Value Problem for the Equation of Continuity of an Incompressible Medium, Dokl. Akad Nauk SSSR, 248, (5), 1037–1040; English TVansl.: Soviet Math Dokl, 20 (1979), 1094–1098 [III.3, Notes for III]Google Scholar
  4. Bogovskiï, M.E., 1980, Solution of Some Vector Analysis Problems Connected with Operators Div and Grad, Trudy Seminar S.L.Sobolev, #1, 80, Akademia Nauk SSSR, Sibirskoe Otdelnie Matematiki, Nowosibirsk, 5–40 (in Russian) [III.3, III.4, Notes for III].Google Scholar
  5. Bogovskiï, M.E., 1986, Decomposition of LP(Q; IRn) infto the Direct Sum of Subspaces of Solenoidal and Potential Vector Fields, Dokl Akad. Nauk SSSR, 286, 662–666; English TVansl.: Soviet Math. Dokl, 33, 161–165 [lll.l]Google Scholar
  6. Crudeli, U., 1925a, Metodo di Risoluzione di Un Problema Fondamentale nella Teoria del Moto Lento Stazionario di Liquidi Viscosi, Atti Accad. Naz. Linceip (IV), 25, 247–251 [Notes for IV]Google Scholar
  7. Crudeli, U., 1925b, Sopra un Problema Fondamentale nella Teoria del Moto Lento Stazionario dei Liquidi Viscosi, Rivista di Mat. e Fis., Circolo Mat.-Fis. Univ. Messina [Notes for IV]Google Scholar
  8. Oseen, C.W., 1927, Neuere Methoden und Ergebnisse in der Hydrodynamik, Leipzig, Akad. Verlagsgesellschaft M.B.H. [Notes for IV, Notes for V, VII.3, Introduction to VII]Google Scholar
  9. Padula, M., 1984, On the Traction Problem for Linear Elastostatics in Exterior Domains, Proc. Roy. Soc. Edinburgh, 96 A, 55–64 [Notes for II]Google Scholar
  10. Padula, M., 1986, Existence of Global Solutions for 2-Dimensional Viscous Compressible Flows, J. Funct. Anal., 69, 1–20 [Notes for II]MathSciNetGoogle Scholar
  11. Lichtenstein, L., 1928, Über Einige Existenzeprobleme der Hydrodynamik, Math. Z., 28, 387–415 [Notes for IV]MathSciNetzbMATHCrossRefGoogle Scholar
  12. Cattabriga, L., 1961, Su un Problema al Contorno Relativo al Sistema di Equazioni di Stokes, Rend. Sem. Mat. Padova, 31, 308–340 [Notes for III, Introduction to IV, IV. 1, IV.5. IV.6, Notes for IV]MathSciNetzbMATHGoogle Scholar
  13. Solonnikov, V.A., 1973, Estimates for Solutions of Nonstationary Nav-ier-Stokes Equations, Zap. Nauch. Sem. Len. Otdel Mat. Inst. Steklov (LOMII 38, 153–231; English TVansl.: J. Soviet Math. 8, 1977, 467–528 [Notes for III, Notes for V]MathSciNetGoogle Scholar
  14. Amick, C.J., 1976, Decomposition Theorems for Solenoidal Vector Fields, J. London Math. Soc., 15, 288–296 [Notes for III, Notes for IV]MathSciNetGoogle Scholar
  15. Temam, R., 1977, Navier-Stokes Equations, North-Holland Pub. Co., Amsterdam-New York-Tokyo [III.2, Notes for I II, Introduction to IV, Notes for IV]Google Scholar
  16. Galdi, G.P., and Simader, C.G., 1990, Existence, Uniqueness and L9-Estimates for the Stokes Problem in an Exterior Domain, Arch. Rational Mech. Anal, 112, 291–318 [II.6, Introduction to IV, Notes for IV, V.5, Notes for V]MathSciNetzbMATHGoogle Scholar
  17. Cattabriga, L., 1961, Su un Problema al Contorno Relativo al Sistema di Equazioni di Stokes, Rend. Sem. Mat. Padova, 31, 308–340 [Notes for III, Introduction to IV, IV. 1, IV.5. IV.6, Notes for IV]Google Scholar
  18. Chandrasekhar, S., 1981, Hydrodynamic and Hydromagnetic Stability, Dover Pubi. Ine, New York [1.1]Google Scholar
  19. Borchers, W., and Miyakawa, T., 1990, Algebraic L2 Decay for Navier-Stokes Flows in Exterior Domains, Acta Math., 165, 189–227 [Notes for IV, Notes for V]MathSciNetzbMATHCrossRefGoogle Scholar
  20. Kozono, H., and Sohr, H., 1991, New A Priori Estimates for the Stokes Equations in Exterior Domains, Indiana Univ. Math. J., 40, 1–28 [Notes for II, Notes for IV]Google Scholar
  21. Kozono, H., and Sohr, H., 1992a, Density Properties for Solenoidal Vector Fields, with Applications to the Navier-Stokes Equations, J. Math. Soc. Japan„ 300, 307–330 [Notes for III]MathSciNetCrossRefGoogle Scholar
  22. Pulidori, R., 1993, Esistenza ed Unicità per il Problema di Stokes in Domini Esterni in Spazi di Sobolev con Peso, Tesi di Laurea,, Dipartimento di Matematica dell’Università di Ferrara [Notes for IV, Notes for V]Google Scholar
  23. Cattabriga, L., 1961, Su un Problema al Contorno Relativo al Sistema di Equazioni di Stokes, Rend. Sem. Mat. Padova, 31, 308–340 [Notes for III, Introduction to IV, IV. 1, IV.5. IV.6, Notes for IV]Google Scholar
  24. Maslennikova, V.N., and Timoshin, M.A., 1989, Lp Theory for the Stokes System in Exterior Domains, Proc. Symposium on New Methods in Analysis and Differential Equations, University of Voronez Press 63–77 (in Russian) [Notes for V]Google Scholar
  25. Maslennikova, V.N., and Timoshin, M.A., 1990, Lp Theory for the Stokes Equations in Unbounded Domains with a Compact Boundary, Dokl. Akad. Nauk. SSSR, 313, 1341–1346 (in Russian) [Notes for IV, Notes for V]Google Scholar
  26. Padula, M., 1992, Stability Properties of Regular Flows of Heat-con-ducting Compressible Fluids, J. Math. Kyoto University, 32, 401–442 [III.3]MathSciNetzbMATHGoogle Scholar
  27. Lorentz, H.A., 1896, Ein Allgemeiner Satz, die Bewegung Einer Reibenden Flüssigkeit Betreffend, Nebst Einegen Anwendungen Desselben, Zittingsverlag Akad. Wet. Amsterdam, 5, 168–175 [IV.2, Notes for IV]Google Scholar
  28. Ladyzhenskaya, O.A., 1969, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach [1.2, Notes for III, IV. 4, Notes for IV, Notes for V]Google Scholar
  29. Borchers, W., and Miyakawa, T., 1988, L2 Decay for the Navier- Stokes Flow in Halfspaces, Math. Ann., 282, 139–155 [Notes for IV]MathSciNetGoogle Scholar
  30. Deuring, P., 1994, The Stokes System in an Infinite Cone, Mathematical Research, Vol. 78, Akademie Verlag [Notes for IV]Google Scholar
  31. Deuring, P., and von Wahl, W., 1989, Das Lineare Stokes System in IR3. II. Das Außenraumproblem, Bayreuth. Math. Sehr., 28, 1–109 [Notes for V]Google Scholar
  32. Deuring, P., von Wahl, W., and Weidemaier, P., 1988, Das Lineare Stokes System in IR3. I. Vorlesung über das Inneraumproblem, Bayreuth. Math. Sehr., 27, 1–252 [Notes for IV]Google Scholar
  33. De Vito, L., 1958, Sulle Funzioni ad Integrale di Dirichlet Finito, Ann. Scuola Norm. Sup. Pisa, (3) 12, 55–127 [II.3]Google Scholar
  34. Erig, W., 1982, Die Gleichungen von Stokes un die Bogovskii-Formel, Diplomarbeit, Universität Paderborn [Notes for II, Notes for III]Google Scholar
  35. Krzywcky, A., 1961, An Application of WeyPs Method to a Boundary Value Problem of the Linearized Equations of Hydrodynamics, Prace Mat., 5, 15–26 (in Polish) [Notes for IV]Google Scholar
  36. Kudrjavcev, L.D., 1966a, Imbedding Theorem for a Class of Functions Defined on the Entire Space or on a Half Space. I, Mat. SSSR Sbornik, 69, 616–636; English Transi.: Amer. Math. Soc. Transi., 74, 1968, 199–225 [II.8]Google Scholar
  37. Kudrjavcev, L.D., 1966b, Imbedding Theorem for a Class of Functions Defined on the Entire Space or on a Half Space. II, Mat. SSSR Sbornik, 69, 638–652; English Transi.: Amer. Math. Soc. Transi., 74, 1968, 227–260 [II.8]Google Scholar
  38. Simader, C.G., 1992, Mean Value Formulas, Weyl’s Lemma and Liou-ville Theorem for A2 and Stokes’ System, Resultate der Mathematik, 22, 761–780 [Notes for IV]Google Scholar
  39. Simader, C.G., and Sohr, H., 1992, The Helmholtz Decomposition in Lq and Related Topics, Mathematical Problems Related to the Navier- Stokes Equation, Galdi, G.P., Ed., Advances in Mathematics for Applied Science, 11, World Scientific, 1–35 [III.l, Notes for III]Google Scholar
  40. Geymonat, G., 1965, Sui Problemi ai Limiti per i Sistemi Lineari Ellittici, Ann. Mat. Pura Appi, 69, 207–284 [Notes for IV]MathSciNetzbMATHCrossRefGoogle Scholar
  41. Ghidaglia, J.M., 1984, Regularite des Solutions de Certains Problems aux Limites Lineaires Liees aux Equations d’Euler, Comm. in Partial Diff. Eqs., 9, 1265–1298 [Notes for IV]MathSciNetzbMATHCrossRefGoogle Scholar
  42. Kozono, H., and Sohr, H., 1991, New A Priori Estimates for the Stokes Equations in Exterior Domains, Indiana Univ. Math. J., 40, 1–28 [Notes for II, Notes for IV]MathSciNetzbMATHGoogle Scholar
  43. Maremonti, P., and Solonnikov, V.A., 1990, An Estimate for Solutions of the Stokes System in Exterior Domains, Zap. Nauch. Sem. Len. Otdel Mat. Inst. Steklov (LOMI), 180, 105–120 (in Russian) [Notes for V]Google Scholar
  44. Amrouche, C., and Girault, V., 1991, On the Existence and Regularity of the Solution of Stokes Problem in Arbitrary Dimension, Proc. Japan Acad., 67, 171–175 [Notes for IV]Google Scholar
  45. Grisvard, P., 1985, Elliptic Problems in Non-Smooth Domains, Monographs and Studies in Math., Vol. 24, Pitman [Notes for IV]Google Scholar
  46. Maslennikova, V.N., and Bogovskii, M.E., 1981a, On the Approximation of Solenoidal and Potential Vector Fields, Uspehi Mat. Nauk., 36, 239–240 (in Russian) [III.4]Google Scholar
  47. Ames, K.A., and Payne, L.E., 1989, Decay Estimate in Steady Pipe Flow, SI AM J. Math. Anal., 20, 789–815 [Notes for VI]MathSciNetzbMATHGoogle Scholar
  48. Amick, C.J., 1976, Decomposition Theorems for Solenoidal Vector Fields, J. London Math. Soc., 15, 288–296 [Notes for III, Notes for IV]Google Scholar
  49. Amick, C.J., 1977, Steady Solutions of the Navier-Stokes Equations in Unbounded Channels and Pipes, Ann. Scuola Norm. Pisa, (4) 4, 473–513 [1.3, Introduction to VI]Google Scholar
  50. Amick, C.J., 1978, Properties of Steady Solutions of the Navier-Stokes Equations for Certain Unbounded Channels and Pipes, Nonlin. Anal., Theory, Meth. Appl, 2, 689–720 [1.3, Introduction to VI]MathSciNetzbMATHCrossRefGoogle Scholar
  51. Amick, C.J., 1979, Steady Solutions of the Navier-Stokes Equations Representing Plane Flow in Channels of Various Types, Approximation Methods for Navier-Stokes Problems, Rautmann, R., Ed., Lecture Notes in Mathematics, Vol. 771, Springer-Verlag, 1–11 [Introduction to VI]Google Scholar
  52. Amick, C. J., 1986, On Steady Navier-Stokes Flow Past a Body in the Plane, Proc. Symposia Pure Math., 45, Amer. Math. Soc., 37–50 [1.2]Google Scholar
  53. Amick, C. J., 1988, On Leray’s Problem of Steady Navier-Stokes Flow Past a Body in the Plane, Acta Math., 161, 71–130 [1.2]MathSciNetzbMATHCrossRefGoogle Scholar
  54. Amick, C. J., 1991, On the Asymptotic Form of Navier-Stokes Flow Past a Body in the Plane, J. Diff. Equations, 91, 149–167 [1.2]MathSciNetzbMATHCrossRefGoogle Scholar
  55. Dauge, M., 1989, Stationary Stokes and Navier-Stokes Equations on Two or Three-Dimensional Domains with Corners, SIAM J. Math. Anal., 20, 74–97 [Notes for IV]MathSciNetzbMATHGoogle Scholar
  56. Farwig, R., and Sohr, H., 1994a, The Stationary and Non-stationary Stokes System in Exterior Domains with Non-zero Divergence and Non-zero Boundary Values, Math. Meth. Appi. Sci., 17, 269–291 [Notes for III]MathSciNetzbMATHCrossRefGoogle Scholar
  57. Pukhnacev, V.V., and Solonnikov, V.A., 1982, On the Problem of Dynamic Contact Angle, Prikl. Matem. Mekhan., 46, 961–971; English TYansl.: PMM U.S.S.R., 46, 1983, 771–779 [1.1]Google Scholar
  58. Pukhnacev, V.V., 1990a, Stokes Approximation in a Problem of the Flow Around a Self-Propelled Body, Boundary Value Problems in Mathematical Physics, Naukova Dumka, Kiev, 65–73 (in Russian) [V.6, Notes for V]Google Scholar
  59. Pulidori, R., 1993, Esistenza ed Unicità per il Problema di Stokes in Domini Esterni in Spazi di Sobolev con Peso, Tesi di Laurea,, Dipartimento di Matematica dell’Università di Ferrara [Notes for IV, Notes for V]Google Scholar
  60. Pulidori, R., and Specovius-Neugebauer, M., 1995, Generalized Solutions for the Stokes Equation in Exterior Domains, Navier-StokesGoogle Scholar
  61. Equations and Related Nonlinear Problems, Sequeira, A., Ed., Plenum Press, New York and London, 53–62 [Notes for V]Google Scholar
  62. Galdi, G.P., and Varnhorn, W., 1996, The Maximum Modulus Theorem for the Stokes System, to be published [Notes for IV]Google Scholar
  63. Naumann, J., 1988, On a Maximum Principle for Weak Solutions of the Stationary Stokes System, Ann. Scuola Norm. Pisa, (4) 15, 149–168 [Notes for IV]MathSciNetzbMATHGoogle Scholar
  64. Kratz, W., 1995a, The Maximum Modulus Theorem for the Stokes System in a Ball, Preprint, Universität Ulm [Notes for IV]Google Scholar
  65. Kratz, W., 1995b, On the Maximum Modulus Theorem for Stokes Functions in the Plane, Preprint, Universität Ulm [Notes for IV]Google Scholar
  66. Valli, A., 1985, On the Integral Representation of the Solution to the Stokes System, Rend. Sem. Mat. Padova, 74, 85–114 [Notes for IV]MathSciNetzbMATHGoogle Scholar
  67. Velte, W., 1990, On Optimal Constants in Some Inequalities, Navier- Stokes Equations: Theory and Numerical Methods, Heywood, J.G., Masuda, K., Rautmann, R., and Solonnikov, V.A. Eds., Lecture Notes in Mathematics, Springer-Verlag, Vol. 1431, 158–168 [Notes for III]Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Giovanni P. Galdi
    • 1
  1. 1.Istituto di IngegneriaUniversità di FerraraFerraraItaly

Personalised recommendations