Variants of FFT Algorithm and Their Implementations

  • R. Tolimieri
  • Myoung An
  • Chao Lu
Part of the Signal Processing and Digital Filtering book series (SIGNAL PROCESS)


In chapter 3, additive FFT algorithms were derived corresponding to the factorization of the transform size N into the product of two factors. Analogous algorithms will now be designed corresponding to transform sizes given as the product of three or more factors. In general, as the number of factors increases, the number of possible algorithms increases.


Fast Fourier Transform Permutation Matrice Vector Computer Fast Fourier Trans Vector Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Agarwal R. C. and Cooley, J. W. ”Vectorized Mixed Radix Discrete Fourier Transform Algorithms”. March 1986, IBM Report.Google Scholar
  2. [2]
    Cochran, W.T. et al. ”What is the Fast Fourier Transform?,” IEEE Trans. Audio Electroacoust., vol.15, 1967, pp.45–55.CrossRefGoogle Scholar
  3. [3]
    Cooley, J.W. and Tukey, J.W. ”An ALgorithm for the Machine Calculation of Complex Fourier Series,” Math. Comp., vol.19, 1965, pp.297–301.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Gentleman, W.M. and Sande, G. ”Fast Fourier Transform for Fun and Profit,” Proc. AFIPS, Joint Computer Conference, vol 29, 1966, pp.563–578.Google Scholar
  5. [5]
    Korn, D.G., Lambiotte, J.J. ”Computing the Fast Fourier Transform on a Vector Computer,” Math. Comp., vol.33, 1979, pp.977–992.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Pease, M. C. ” An Adaptation of the Fast Fourier Transform for Parallel Processing,” J. ACM, vol.15, 1968, pp.252–265.zbMATHCrossRefGoogle Scholar
  7. [7]
    Singleton, R. C. ”On Computing the Fast Fourier Transform,” J. ACM, vol.10, 1967, pp.647–654.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Singleton, R. C. ” An Algorithm for Computing the Mixed Radix Fast Fourier Transform,” IEEE Trans. Audio Electroacoust., vol. 17, 1969, pp.93–103.CrossRefGoogle Scholar
  9. [9]
    Temperton, C. ”Self-Sorting Mixed Radix Fast Fourier Transforms,” Journal of Computational Physics, vol.52, 1983, ppl–23.Google Scholar
  10. [10]
    Temperton, C. ”Implementation of a Prime Factor FFT algorithm on the CRAY-1,” 1987, to appear in J. Comput. Phys.Google Scholar
  11. [11]
    Temperton, C. ”Implementation of a Self-Sorting In-Place Prime Factor FFT algorithm,” J. Comput. Phys., 58(3), 283–299, May 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Temperton, C. ”A Note on a Prime Factor FFT,” J. Comput. Phys., 52(1), 198–204, Oct. 1983.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Heideman, M.T. and Burrus, C.S. ”Multiply/add Tradeoff in Length-2n FFT Algorithms”, ICASSP’85, pp. 780-783.Google Scholar
  14. [14]
    Duhamel, P. ”Implementation of ”Split-Radix” FFT Algorithms for Complex, Real, and Real-Symmetric Data”, IEEE Trans, on ASSP, vol.34, No. 2, April 1986.Google Scholar
  15. [15]
    Vetterli, M. and Duhamel, P. ” Split-Radix Algorithms for Length pm DFT’s“, ICASSP’88, pp. 1415-1418.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • R. Tolimieri
    • 1
  • Myoung An
    • 1
  • Chao Lu
    • 1
  1. 1.Center for Large Scale ComputingCity University of New YorkNew YorkUSA

Personalised recommendations