Skip to main content

Abstract

The wave propagation phenomena in fluids that we have examined in previous chapters have referred to waves in infinite or semi-infinite spaces generated by the vibrational motion of some small object or surface in that space. We now turn to the very different problem of studying the sound field inside the tube of a wind instrument. Ultimately, we shall join together the two discussions by considering the sound radiated from the open end or finger holes of the instrument, but for the moment our concern is with the internal field. We begin with the very simplest cases and then add complications until we have a reasonably complete representation of an actual instrument. At this stage, we will find it necessary to make a digression, for a wind instrument is not excited by a simple source, such as a loudspeaker, but is coupled to a complex pressure-controlled or velocity-controlled generator—the reed or air jet—and we must understand the functioning of this before we can proceed. Finally, we go on to treat the strongly coupled pipe and generator system that makes up the instrument as played.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayers, R.D., Eliason, L.J., and Mahgerefteh, D. (1985). The conical bore in musical acoustics. Am. J. Phys. 53, 528–537.

    Article  ADS  Google Scholar 

  • Benade, A.H. (1959). On woodwind instrument bores. J. Acoust. Soc. Am. 31, 137–146.

    Article  ADS  Google Scholar 

  • Benade, A.H. (1968). On the propagation of sound waves in a cylindrical conduit. J. Acoust. Soc. Am. 44, 616–623.

    Article  ADS  Google Scholar 

  • Benade, A.H., and Jansson, E.V. (1974). On plane and spherical waves in horns with nonuniform flare. Acustica 31, 80–98.

    Google Scholar 

  • Beranek, L.L. (1954). “Acoustics,” pp. 91–115. McGraw-Hill, New York; reprinted 1986, Acoustical Society Am., Woodbury, New York.

    Google Scholar 

  • Eisner, E. (1967). Complete solutions of the “Webster” horn equation. J. Acoust. Soc. Am. 41, 1126–1146.

    Article  ADS  MATH  Google Scholar 

  • Fletcher, N.H., and Thwaites, S. (1988). Response of obliquely truncated simple horns: Idealized models for vertebrate pinnae. Acustica 65, 194–204.

    Google Scholar 

  • Jahnke, E. and Emde, F. (1938). “Tables of Functions,” p. 146. Teubner, Leipzig, Reprinted 1945, Dover, New York.

    Google Scholar 

  • Kergomard, J. (1981). Ondes quasi-stationnaires dans les pavillons avec partis viscothermiques aux parois: Calcul de l’impedance. Acustica 48, 31–43.

    MATH  Google Scholar 

  • Levine, H., and Schwinger, J. (1948). On the radiation of sound from an unflanged pipe. Phys. Rev. 73, 383–406.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • McIntyre, M.E., Schumacher, R.T., and Woodhouse, J. (1983). On the oscillation of musical instruments. J. Acoust. Soc. Am. 74, 1325–1345.

    Article  ADS  Google Scholar 

  • Morse, P.M. (1948). “Vibration and Sound,” 2nd ed pp. 233–288. McGraw-Hill, New York; reprinted 1976, Acoustical Society of Am., Woodbury, New York.

    Google Scholar 

  • Morse, P.M., and Feshbach, H. (1953). “Methods of Mathematical Physics,” Vol. 1, pp. 494–523, 655–666. McGraw-Hill, New York.

    Google Scholar 

  • Morse, P.M., and Ingard, K.U. (1968). “Theoretical Acoustics,” pp. 467–553. McGrawHill, New York. Reprinted 1986, Princeton Univ. Press, Princeton, New Jersey.

    Google Scholar 

  • Olson, H.F. (1957). “Acoustical Engineering,” pp. 88–123. Van Nostrand-Reinhold, Princeton, New Jersey.

    Google Scholar 

  • Pyle, R.W. (1975). Effective length of horns. J. Acoust. Soc. Am. 57, 1309–1317.

    Article  ADS  Google Scholar 

  • Rayleigh, Lord (1894). “The Theory of Sound,” 2 vols. Macmillan, London. Reprinted 1945. Dover, New York.

    Google Scholar 

  • Salmon, V. (1946a). Generalized plane wave horn theory. J. Acoust. Soc. Am. 17, 199–211.

    Article  ADS  Google Scholar 

  • Salmon, V. (1946b). A new family of horns. J. Acoust. Soc. Am. 17, 212–218. Schumacher, R.T. (1981). Ab initio calculations of the oscillations of a clarinet. Acustica 48, 71–85.

    Google Scholar 

  • Webster, A.G. (1919). Acoustical impedance, and the theory of horns and of the phonograph. Proc. Nat. Acad. Sci. (US) 5, 275–282.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rossing, T.D., Fletcher, N.H. (2004). Pipes and Horns. In: Principles of Vibration and Sound. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3822-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3822-3_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2343-1

  • Online ISBN: 978-1-4757-3822-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics