Skip to main content

Two-Dimensional Systems: Membranes and Plates

  • Chapter
Principles of Vibration and Sound

Abstract

In this chapter, we will consider two-dimensional, continuous vibrating systems, with and without stiffness. An ideal membrane, like an ideal string, has no stiffness of its own, and thus, its oscillations depend upon the restoring force supplied by an externally applied tension. A plate, on the other hand, like a bar, can vibrate with fixed or free ends and with or without external tension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Caldersmith, G.W. (1984). Vibrations of orthotropic rectangular plates. Acustica 56, 144–152.

    Google Scholar 

  • Caldersmith, G., and Rossing, T.D. (1983). Ring modes, X-modes and Poisson coupling. Catgut Acoust. Soc. Newsletter, No. 39, 12–14.

    Google Scholar 

  • Caldersmith, G., and Rossing, T.D. (1984). Determination of modal coupling in vibrating rectangular plates. Applied Acoustics 17, 33–44.

    Article  Google Scholar 

  • Chladni, E.F.F. (1802). “Die Akustik,” 2nd ed. Breitkopf u. Härtel, Leipzig.

    Google Scholar 

  • Cremer, L. (1984). “The Physics of the Violin.” Translated by J.S. Allen, M. I. T. Press, Cambridge, Massachusetts.

    Google Scholar 

  • Cremer, L., Heckl, M., and Ungar, E.E. (1973). “Structure-Borne Sound,” Chapter 4. Springer-Verlag, Berlin and New York.

    Google Scholar 

  • Fletcher, N.H. (1985). Nonlinear frequency shifts in quasispherical-cap shells: Pitch glide in Chinese gongs. J. Acoust. Soc. Am. 782069–2073.

    Google Scholar 

  • French, A.P. (1971). “Vibrations and Waves,” p. 181 ff. Norton, New York. Grossman, P.L., Koplik, B., and Yu, Y-Y. (1969). Nonlinear vibrations of shallow spherical shells. J. Appl. Mech. 36, 451–458.

    Google Scholar 

  • Hearmon, R.F.S. (1961). “Introduction to Applied Anisotropic Elasticity.” Oxford Univ. Press, London.

    Google Scholar 

  • Hutchins, C.M. (1977). Another piece of the free plate tap tone puzzle. Catgut Acoust. Soc. Newsletter, No. 28, 22.

    Google Scholar 

  • Hutchins, C.M. (1981). The acoustics of violin plates. Scientific American 245 (4), 170.

    Article  Google Scholar 

  • Johnson, M.W., and Reissner, E. (1958). On transverse vibrations of shallow spherical shells. Q. Appl. Math. 15, 367–380.

    MathSciNet  MATH  Google Scholar 

  • Kalnins. A. (1963). Free nonsymmetric vibrations of shallow spherical shells. Proc. 4th U.S. Cong. Appl. Mech., 225–233.

    Google Scholar 

  • Reprinted in “Vibrations: Beams, Plates, and Shells” (A. Kalnins and C.L. Dym, eds.), Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania 1976.

    Google Scholar 

  • Kinsler, L.E., Frey, A.R., Coppens, A.B., and Sanders, J.V. (1982). “Fundamentals of Acoustics,” 3rd ed., Chapter 4. Wiley, New York.

    Google Scholar 

  • Leissa, A.W. (1969). “Vibration of Plates,” NASA SP-160, NASA, Washington, D.C. Leissa, A.W., and Kadi, A.S. (1971). Curvature effects on shallow spherical shell vibrations, J. Sound Vibr. 16, 173–187.

    Article  ADS  Google Scholar 

  • McIntyre, M.E., and Woodhouse, J. (1984/1985/1986). On measuring wood properties, Parts 1, 2, and 3, J. Catgut Acoust. Soc. No. 42, 11–25; No. 43, 18–24; and No. 45, 14–23.

    Google Scholar 

  • Morse, P.M. (1948). “Vibration and Sound,” Chapter 5. McGraw-Hill, New York. Reprinted 1976, Acoustical Soc. Am., Woodbury, New York.

    Google Scholar 

  • Morse, P.M., and Ingard, K.U. (1968). Chapter 5. “Theoretical Acoustics,” McGrawHill, New York. Reprinted 1986, Princeton Univ. Press, Princeton, New Jersey. Rayleigh, Lord (1894). “The Theory of Sound,” Vol. 1, 2nd ed., Chapters 9 and 10.

    Google Scholar 

  • Macmillan, New York. Reprinted by Dover, New York, 1945.

    Google Scholar 

  • Reissner, E. (1946). On vibrations of shallow spherical shells. J. Appt. Phys. 17, 1038–1042.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Reissner, E. (1955). On axi-symmetrical vibrations of shallow spherical shells. Q. Appl. Math. 13, 279–290.

    MathSciNet  MATH  Google Scholar 

  • Rossing, T.D. (1982a). “The Science of Sound,” Chapters 2 and 13. Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Rossing, T.D. (1982b). The physics of kettledrums. Scientific American 247 (5), 172–178.

    Article  ADS  Google Scholar 

  • Rossing, T.D. (1982c). Chladni’s law for vibrating plates. American J. Physics 50, 271–274.

    Article  ADS  Google Scholar 

  • Rossing, T.D., and Fletcher, N.H. (1983). Nonlinear vibrations in plates and gongs. J. Acoust. Soc. Am. 73, 345–351.

    Article  ADS  Google Scholar 

  • Snowdon, J.C. (1965). Mechanical impedance of free—free beams. J. Acoust. Soc. Am. 37, 240–249.

    Article  ADS  Google Scholar 

  • Ver, I.L., and Holmer, C.I. (1971). Interaction of sound waves with solid structures. In “Noise and Vibration Control” (L.L. Beranek, ed.). McGraw-Hill, New York. Waller, M.D. (1938). “Vibrations of free circular plates. Part I: Normal modes. Proc. Phys. Soc. 50, 70–76.

    Google Scholar 

  • Waller, M.D. (1949). Vibrations of free rectangular plates. Proc. Phys. Soc. London B62, 277–285.

    Article  ADS  MATH  Google Scholar 

  • Waller, M.D. (1950). Vibrations of free elliptical plates. Proc. Phys. Soc. London B63, 451–455.

    Google Scholar 

  • Waller, M.D. (1961). “Chladni Figures: A study in Symmetry.” Bell, London. Warburton, G.B. (1954). The vibration of rectangular plates. Proc. Inst. Mech. Eng. A168, 371–384.

    Google Scholar 

  • Wood Handbook (1974). Mechanical properties of wood. In “Wood Handbook: Wood as an Engineering Material.” U.S. Forest Products Laboratory, Madison, Wisconsin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rossing, T.D., Fletcher, N.H. (2004). Two-Dimensional Systems: Membranes and Plates. In: Principles of Vibration and Sound. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3822-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3822-3_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2343-1

  • Online ISBN: 978-1-4757-3822-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics