Two-Dimensional Systems: Membranes and Plates

  • Thomas D. Rossing
  • Neville H. Fletcher


In this chapter, we will consider two-dimensional, continuous vibrating systems, with and without stiffness. An ideal membrane, like an ideal string, has no stiffness of its own, and thus, its oscillations depend upon the restoring force supplied by an externally applied tension. A plate, on the other hand, like a bar, can vibrate with fixed or free ends and with or without external tension.


Rectangular Plate Circular Plate Free Edge Nodal Line Torsional Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Caldersmith, G.W. (1984). Vibrations of orthotropic rectangular plates. Acustica 56, 144–152.Google Scholar
  2. Caldersmith, G., and Rossing, T.D. (1983). Ring modes, X-modes and Poisson coupling. Catgut Acoust. Soc. Newsletter, No. 39, 12–14.Google Scholar
  3. Caldersmith, G., and Rossing, T.D. (1984). Determination of modal coupling in vibrating rectangular plates. Applied Acoustics 17, 33–44.CrossRefGoogle Scholar
  4. Chladni, E.F.F. (1802). “Die Akustik,” 2nd ed. Breitkopf u. Härtel, Leipzig.Google Scholar
  5. Cremer, L. (1984). “The Physics of the Violin.” Translated by J.S. Allen, M. I. T. Press, Cambridge, Massachusetts.Google Scholar
  6. Cremer, L., Heckl, M., and Ungar, E.E. (1973). “Structure-Borne Sound,” Chapter 4. Springer-Verlag, Berlin and New York.Google Scholar
  7. Fletcher, N.H. (1985). Nonlinear frequency shifts in quasispherical-cap shells: Pitch glide in Chinese gongs. J. Acoust. Soc. Am. 782069–2073.Google Scholar
  8. French, A.P. (1971). “Vibrations and Waves,” p. 181 ff. Norton, New York. Grossman, P.L., Koplik, B., and Yu, Y-Y. (1969). Nonlinear vibrations of shallow spherical shells. J. Appl. Mech. 36, 451–458.Google Scholar
  9. Hearmon, R.F.S. (1961). “Introduction to Applied Anisotropic Elasticity.” Oxford Univ. Press, London.Google Scholar
  10. Hutchins, C.M. (1977). Another piece of the free plate tap tone puzzle. Catgut Acoust. Soc. Newsletter, No. 28, 22.Google Scholar
  11. Hutchins, C.M. (1981). The acoustics of violin plates. Scientific American 245 (4), 170.CrossRefGoogle Scholar
  12. Johnson, M.W., and Reissner, E. (1958). On transverse vibrations of shallow spherical shells. Q. Appl. Math. 15, 367–380.MathSciNetzbMATHGoogle Scholar
  13. Kalnins. A. (1963). Free nonsymmetric vibrations of shallow spherical shells. Proc. 4th U.S. Cong. Appl. Mech., 225–233.Google Scholar
  14. Reprinted in “Vibrations: Beams, Plates, and Shells” (A. Kalnins and C.L. Dym, eds.), Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania 1976.Google Scholar
  15. Kinsler, L.E., Frey, A.R., Coppens, A.B., and Sanders, J.V. (1982). “Fundamentals of Acoustics,” 3rd ed., Chapter 4. Wiley, New York.Google Scholar
  16. Leissa, A.W. (1969). “Vibration of Plates,” NASA SP-160, NASA, Washington, D.C. Leissa, A.W., and Kadi, A.S. (1971). Curvature effects on shallow spherical shell vibrations, J. Sound Vibr. 16, 173–187.ADSCrossRefGoogle Scholar
  17. McIntyre, M.E., and Woodhouse, J. (1984/1985/1986). On measuring wood properties, Parts 1, 2, and 3, J. Catgut Acoust. Soc. No. 42, 11–25; No. 43, 18–24; and No. 45, 14–23.Google Scholar
  18. Morse, P.M. (1948). “Vibration and Sound,” Chapter 5. McGraw-Hill, New York. Reprinted 1976, Acoustical Soc. Am., Woodbury, New York.Google Scholar
  19. Morse, P.M., and Ingard, K.U. (1968). Chapter 5. “Theoretical Acoustics,” McGrawHill, New York. Reprinted 1986, Princeton Univ. Press, Princeton, New Jersey. Rayleigh, Lord (1894). “The Theory of Sound,” Vol. 1, 2nd ed., Chapters 9 and 10.Google Scholar
  20. Macmillan, New York. Reprinted by Dover, New York, 1945.Google Scholar
  21. Reissner, E. (1946). On vibrations of shallow spherical shells. J. Appt. Phys. 17, 1038–1042.MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. Reissner, E. (1955). On axi-symmetrical vibrations of shallow spherical shells. Q. Appl. Math. 13, 279–290.MathSciNetzbMATHGoogle Scholar
  23. Rossing, T.D. (1982a). “The Science of Sound,” Chapters 2 and 13. Addison-Wesley, Reading, Massachusetts.Google Scholar
  24. Rossing, T.D. (1982b). The physics of kettledrums. Scientific American 247 (5), 172–178.ADSCrossRefGoogle Scholar
  25. Rossing, T.D. (1982c). Chladni’s law for vibrating plates. American J. Physics 50, 271–274.ADSCrossRefGoogle Scholar
  26. Rossing, T.D., and Fletcher, N.H. (1983). Nonlinear vibrations in plates and gongs. J. Acoust. Soc. Am. 73, 345–351.ADSCrossRefGoogle Scholar
  27. Snowdon, J.C. (1965). Mechanical impedance of free—free beams. J. Acoust. Soc. Am. 37, 240–249.ADSCrossRefGoogle Scholar
  28. Ver, I.L., and Holmer, C.I. (1971). Interaction of sound waves with solid structures. In “Noise and Vibration Control” (L.L. Beranek, ed.). McGraw-Hill, New York. Waller, M.D. (1938). “Vibrations of free circular plates. Part I: Normal modes. Proc. Phys. Soc. 50, 70–76.Google Scholar
  29. Waller, M.D. (1949). Vibrations of free rectangular plates. Proc. Phys. Soc. London B62, 277–285.ADSzbMATHCrossRefGoogle Scholar
  30. Waller, M.D. (1950). Vibrations of free elliptical plates. Proc. Phys. Soc. London B63, 451–455.Google Scholar
  31. Waller, M.D. (1961). “Chladni Figures: A study in Symmetry.” Bell, London. Warburton, G.B. (1954). The vibration of rectangular plates. Proc. Inst. Mech. Eng. A168, 371–384.Google Scholar
  32. Wood Handbook (1974). Mechanical properties of wood. In “Wood Handbook: Wood as an Engineering Material.” U.S. Forest Products Laboratory, Madison, Wisconsin.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Thomas D. Rossing
    • 1
  • Neville H. Fletcher
    • 2
  1. 1.Physics DepartmentNorthern Illinois UniversityDeKalbUSA
  2. 2.Department of Physical Sciences Research School of Physical Sciences and EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations