Skip to main content

Part of the book series: Advances in Information Security ((ADIS,volume 11))

  • 193 Accesses

Abstract

Cryptography was concerned initially with providing secrecy for written messages. Its principles apply equally well to securing data flow between computers, to digitized speech, and to encrypting facsimile and television signals. For example, most satellites routinely encrypt the data flow to and from ground stations to provide both privacy and security for their subscribers. In this chapter, we shall introduce some basic concepts and techniques in public-key cryptography based on primality testing/prime number generation, integer factorization, discrete logarithms, quadratic residuosity, and elliptic curve discrete logarithms, etc.

Cryptography relies heavily on number-theoretic tools. In particular, systems based on (assumed) hardness of problems in number theory, such as factoring and discrete log, form an important part of modern cryptography.

Motwani and Raghavan [110]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Diffie and E. Hellman, “New Directions in Cryptography”, IEEE Transactions on Information Theory, 22, 5 (1976), 644–654.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Gardner, “Mathematical Games–A New Kind of Cipher that Would Take Millions of Years to Break”, Scientific American, 237, 2 (1977), 120–124.

    Article  Google Scholar 

  3. R. C. Merkle, “Secure Communications over Insecure Channels Communications of the ACM 21(1978), 294–299. (Submitted in 1975.)

    Google Scholar 

  4. R. L. Rivest, A. Shamir and L. Adleman, A Method for Obtaining Digital Signatures and Public Key Cryptosystems, Communications of the ACM, 21, 2 (1978), 120–126.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Bishop, Introduction to Cryptography with Java TM Applets, Jones and Bartlett, 2003.

    Google Scholar 

  6. N. Koblitz, ACourse in Number Theory and Cryptography, 2nd Edition, Graduate Texts in Mathematics114, Springer-Verlag, 1994.

    Google Scholar 

  7. J. P. Buhler (editor), Algorithmic Number Theory, Third International Symposium, ANTS-III, Proceedings, Lecture Notes in Computer Science1423, Springer-Verlag, 1998.

    Google Scholar 

  8. S. A. Burr (editor), The Unreasonable Effectiveness of Number Theory, Proceedings of Symposia in Applied Mathematics46, American Mathematical Society, 1992.

    Google Scholar 

  9. N. Koblitz, Algebraic Aspects of Cryptography, Algorithms and Computation in Mathematics3, Springer-Verlag, 1998.

    Google Scholar 

  10. R. A. Mollin, An Introduction to Cryptography, Chapman & Hall/CRC, 2001.

    Google Scholar 

  11. R. A. Mollin, RSA and Public-Key Cryptography, Chapman & Hall/CRC Press, 2003.

    Google Scholar 

  12. N. Smart, Cryptography: An Introduction, McGraw-Hill, 2003.

    Google Scholar 

  13. D. R. Stinson, Cryptography: Theory and Practice, 2nd Edition, Chapman & Hall/CRC Press, 2002.

    Google Scholar 

  14. W. Trappe and L. C. Washington, Introduction toCryptography with Coding Theory, Prentice-Hall, 2002.

    Google Scholar 

  15. S. S. Wagstaff, Jr., Cryptanalysis of Number Theoretic Ciphers, Chapman & Hall/CRC Press, 2002.

    Google Scholar 

  16. N. Koblitz, “A Survey of Number Theory and Cryptography”, in:Number Theory, Edited by. P. Bambah, V. C. Dumir and R. J. Hans-Gill, Birkhäser, 2000, 217–239.

    Google Scholar 

  17. N. Koblitz, “Cryptography”, in:Mathematics Unlimited–2001 and Beyond, Edited by B. Enguist and W. Schmid, Springer-Verlag, 2001, 749–769.

    Chapter  Google Scholar 

  18. F. L. Bauer, Decrypted Secrets — Methods and Maxims of Cryptology, 2nd Edition, Springer-Verlag, 2000.

    Google Scholar 

  19. M. Blum and S. Goldwasser, “An Efficient Probabilistic Public-key Encryption Scheme that Hides all Partial Information”, Advances in Cryptography, CRYPTO ‘84, Proceedings, Lecture Notes in Computer Science196, Springer-Verlag, 1985, 289–302.

    Google Scholar 

  20. W. Diffie and E. Hellman, “Privacy and Authentication: An Introduction to Cryptography”, Proceedings of the IEEE, 67, 3 (1979), 393–427.

    Article  Google Scholar 

  21. T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme based on Discrete Logarithms”, IEEE Transactions on Information Theory, 31 (1985), 496–472.

    Google Scholar 

  22. S. Goldwasser and S. Micali, “Probabilistic Encryption”, Journal of Computer and System Sciences, 28 (1984), 270–299.

    Article  MathSciNet  MATH  Google Scholar 

  23. N. Koblitz, “Elliptic Curve Cryptography”, Mathematics of Computation, 48 (1987), 203–209.

    Article  MathSciNet  MATH  Google Scholar 

  24. K. S. McCurley, “Odds and Ends from Cryptology and Computational Number Theory”, in:Cryptology and Computational Number Theory, edited by C. Pomerance, Proceedings of Symposia in Applied Mathematics 42, American Mathematics Society, 1990, pp 49–74.

    Google Scholar 

  25. R. J. McEliece, APublic-Key Cryptosystem based on Algebraic Coding Theory, JPL DSN Progress Report 42–44, 1978, 583–584.

    Google Scholar 

  26. A. Menezes and S. A. Vanstone, “Elliptic curve cryptosystems and their implementation”, Journal of Cryptology, 6 (1993), 209–224.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptosystems, CRC Press, 1996.

    Google Scholar 

  28. B. Meyer and and V. Müller, “A Public Key Cryptosystem Based on Elliptic Curves over Z/nZ Equivalent to Factoring”, Advances in Cryptology, EUROCRYPT ‘86, Proceedings, Lecture Notes in Computer Science1070, Springer-Verlag, 1996, 49–59.

    Google Scholar 

  29. G. Miller, “Riemann’s Hypothesis and Tests for Primality”, Journal of Systems and Computer Science, 13 (1976), 300–317.

    Article  MATH  Google Scholar 

  30. V. Miller, “Uses of Elliptic Curves in Cryptography”, Advances in Cryptology, CRYPTO ‘85, Proceedings, Lecture Notes in Computer Science218, Springer-Verlag, 1986, 417–426.

    Google Scholar 

  31. R. G. E. Pinch, Mathematics for Cryptography, Queen’s College, University of Cambridge, 1997.

    Google Scholar 

  32. C. Pomerance, “Cryptology and Computational Number Theory–An Introduction”, Cryptology and Computational Number Theory, edited by C. Pomerance, Proceedings of Symposia in Applied Mathematics 42, American Mathematical Society, 1990, 1–12.

    Google Scholar 

  33. B. Schneier, Applied Cryptography - Protocols. Algorithms. and Source Code in C, 2nd Edition, John Wiley & Sons, 1996.

    Google Scholar 

  34. C. P. Schnorr, “Efficient Identification and Signatures for Smart Cards”, Advances in Cryptography, CRYPTO ‘89, Proceedings, Lecture Notes in Computer Science 435, Springer-Verlag, 1990, 239–252.

    Google Scholar 

  35. A. Shamir, “How to Share a Secret”, Communications of the ACM, 22, 11 (1979), 612–613.

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Singh, The Science of Secrecy — The Histroy of Codes and Codebreaking, Fourth Estate, London, 2000.

    Google Scholar 

  37. H. C. A. van Tilborg, Fundamentals of Cryptography, Kluwer Academic Publishers, 1999.

    Google Scholar 

  38. H. Wiener, “Cryptanalysis of Short RSA Secret Exponents”, IEEE Transactions on Information Theory, 36, 3 (1990), 553–558.

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Y. Yan, Number Theory for Computing, 2nd Edition, Springer-Verlag, 2002.

    Google Scholar 

  40. S. Y. Yan, “Computing Prime Factorization and Discrete Logarithms: From Index Calculus to Xedni Calculus”, International Journal of Computer Mathematics, 80, 5 (2003), 573–590.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yan, S.Y. (2004). Number-Theoretic Cryptography. In: Primality Testing and Integer Factorization in Public-Key Cryptography. Advances in Information Security, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3816-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3816-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3818-6

  • Online ISBN: 978-1-4757-3816-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics