Integer Factorization and Discrete Logarithms

  • Song Y. Yan
Part of the Advances in Information Security book series (ADIS, volume 11)


The integer factorization problem (IFP) is to find a nontrivial factor f (not necessarily prime) of a composite integer n. That is,


Elliptic Curve Quantum Algorithm Discrete Logarithm Discrete Logarithm Problem Algebraic Integer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. M. Adleman, “A Subexponential Algorithmic for the Discrete Logarithm Problem with Applications to Cryptography”, Proceedings of the 20th Annual IEEE Symposium on Foundations of Computer Science, IEEE Press, 1979, 5560.Google Scholar
  2. 2.
    L. M. Adleman, “Algorithmic Number Theory–The Complexity Contribution”, Proceedings of the 35thAnnual IEEE Symposium on Foundations of Computer Science, IEEE Press, 1994, 88–113.Google Scholar
  3. 11.
    E. Bach, M. Giesbrecht and J. McInnes, TheComplexity of Number Theoretical Algorithms, Technical Report 247/91, Department of Computer Science, University of Toronto, 1991.Google Scholar
  4. 12.
    E. Bach and J. Shallit, Algorithmic Number Theory I - Efficient Algorithms, MIT Press, 1996.Google Scholar
  5. 34.
    R. P. Brent, “Recent progress and prospects for integer factorisation algorithms”, Proc. COCOON 2000 (Sydney. July 2000), Lecture Notes in Computer Science, Volume 1858, Springer-Verlag, 2000, 3–22.Google Scholar
  6. 35.
    D. M. Bressoud, Factorization and Primality Testing, Undergraduate Texts in Mathematics, Springer-Verlag, 1989.zbMATHCrossRefGoogle Scholar
  7. 37.
    J. P. Buhler (editor), Algorithmic Number Theory, Third International Symposium, ANTS-III, Proceedings, Lecture Notes in Computer Science1423, Springer-Verlag, 1998.Google Scholar
  8. 38.
    S. A. Burr (editor), The Unreasonable Effectiveness of Number Theory, Proceedings of Symposia in Applied Mathematics46, American Mathematical Society, 1992.Google Scholar
  9. 41.
    H. Cohen, ACourse in Computational Algebraic Number Theory, Graduate Texts in Mathematics138, Springer-Verlag, 1993.Google Scholar
  10. 44.
    T. H. Cormen, C. E. Ceiserson and R. L. Rivest, Introduction to Algorithms, MIT Press, 1990.Google Scholar
  11. 64.
    D. M. Gordon and K. S. McCurley, “Massively Parallel Computation of Discrete Logarithms”, Advances in Cryptography, Crypto ‘82, Proceedings, Lecture Notes in Computer Science740, Springer-Verlag, 1992, 312–323.Google Scholar
  12. 73.
    R. M. Huizing, An Implementation of the Number Field Sieve, Note NM-R9511, Centre for Mathematics and Computer Science (CWI), Amsterdam, 1995.Google Scholar
  13. 77.
    M. J. Jacobson, N. Koblitz, J. H. Silverman, A. Stein, E. Teske, “Analysis of the Xedni Calculus Attack”, Designs. Codes and Cryptography, 20, 2000, 41–64.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 80.
    D. E. Knuth, The Art of Computer Programming II - Seminumerical Algorithms, 3rd Edition, Addison-Wesley, 1998.Google Scholar
  15. 89.
    H. W. Lenstra, Jr., “Factoring Integers with Elliptic Curves”, Annals of Mathematics, 126 (1987), 649–673.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 90.
    A. K. Lenstra and H. W. Lenstra, Jr. (editors), The Development of the Number Field Sieve, Lecture Notes in Mathematics1554, Springer-Verlag, 1993.Google Scholar
  17. 92.
    K. S. McCurley, “The Discrete Logarithm Problem”, in:Cryptology and ComputationalNumber Theory, edited by C. Pomerance, Proceedings of Symposia in Applied Mathematics 42, American Mathematics Society, 1990, pp 49–74.Google Scholar
  18. 115.
    A. M. Odlyzko, “Discrete Logarithms in Finite Fields and their Cryptographic Significance”, Advances in Cryptography, EUROCRYPT ‘84, Proceedings, Lecture Notes in Computer Science209, Springer-Verlag, 1984, 225–314.Google Scholar
  19. 120.
    S. C. Pohlig and M. Hellman, “An Improved Algorithm for Computing Logarithms over GF(p) and its Cryptographic Significance”, IEEE Transactions on Information Theory, 24 (1978), 106–110.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 125.
    C. Pomerance, “Cryptology and Computational Number Theory–An Introduction”, Cryptology and Computational Number Theory, edited by C. Pomerance, Proceedings of Symposia in Applied Mathematics 42, American Mathematical Society, 1990, 1–12.Google Scholar
  21. 137.
    H. Riesel, Prime Numbers and Computer Methods for Factorization, Birkhäuser, Boston, 1990.Google Scholar
  22. 155.
    J. H. Silverman and J. Suzuki, “Elliptic Curve Discrete Logarithms and the Index Calculus”, Advances in Cryptology — ASIACRYPT ‘88, Springer Lecture Notes in Computer Science1514, 1998, 110–125.MathSciNetCrossRefGoogle Scholar
  23. 156.
    J. H. Silverman, “The Xedni Calculus and the Elliptic Curve Discrete Logarithm Problem”, Designs. Codes and Cryptography, 20, 2000, 5–40.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 157.
    R. D. Silverman, ‘The Multiple Polynomial Quadratic Sieve“, Mathematics of Computation, 48 (1987), 329–339.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 159.
    R. D. Silverman, “Massively Distributed Computing and Factoring Large Integers”, Communications of the ACM, 34, 11 (1991), 95–103.CrossRefGoogle Scholar
  26. 175.
    H. C. Williams, “The Influence of Computers in theDevelopment of Number Theory”, Computers &Mathematics with Applications, 8, 2 (1982), 75–93.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 176.
    H. C. Williams, “Factoring on a Computer”, Mathematical Intelligencer, 6, 3 (1984), 29–36.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 180.
    S. Y. Yan, Number Theory for Computing, 2nd Edition, Springer-Verlag, 2002.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Song Y. Yan
    • 1
  1. 1.Coventry UniversityUK

Personalised recommendations