The Symplectic Slice Theorem

  • Juan-Pablo Ortega
  • Tudor S. Ratiu
Part of the Progress in Mathematics book series (PM, volume 222)


Most of the good technical behavior of proper Lie group actions is a direct consequence of the existence of slices and tubes; they provide a privileged system of semiglobal coordinates in which the group action takes on a particularly simple form. Proper symplectic Lie group actions turn out to behave similarly: the tubular chart can be constructed in such a way that the expression of the symplectic form is very natural and, moreover, if there is a momentum map associated to this canonical action, this construction provides a normal form for it. The statement and proof of this Symplectic Slice Theorem is the main goal of this chapter.


Symplectic Form Symplectic Manifold Horizontal Lift Horizontal Curve Lagrangian Subspace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Juan Pablo Ortega and Tudor S. Ratiu 2004

Authors and Affiliations

  • Juan-Pablo Ortega
    • 1
  • Tudor S. Ratiu
    • 2
  1. 1.CNRS-Laboratoire de Mathématiques de BensançonUniversité de Franche-Comté, UFR des Sciences et TechniquesBensançon CedexFrance
  2. 2.Départment de MathématiquesLausanneSwitzerland

Personalised recommendations