Scope of Resampling Methods for Dependent Data

  • S. N. Lahiri
Part of the Springer Series in Statistics book series (SSS)


The bootstrap is a computer-intensive method that provides answers to a large class of statistical inference problems without stringent structural assumptions on the underlying random process generating the data. Since its introduction by Efron (1979), the bootstrap has found its application to a number of statistical problems, including many standard ones, where it has outperformed the existing methodology as well as to many complex problems where conventional approaches failed to provide satisfactory answers. However, it is not a panacea for every problem of statistical inference, nor does it apply equally effectively to every type of random process in its simplest form. In this monograph, we shall consider certain classes of dependent processes and point out situations where different types of bootstrap methods can be applied effectively, and also look at situations where these methods run into problems and point out possible remedies, if there is one known.


Mean Square Error Sampling Distribution Bootstrap Method Dependent Data Block Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • S. N. Lahiri
    • 1
  1. 1.Department of StatisticsIowa State UniversityAmesUSA

Personalised recommendations