Skip to main content

Somatosensory vertigo

  • Chapter
Book cover Vertigo
  • 548 Accesses

Abstract

Somatosensory signals from musculotendinous receptors in the neck and joints provide an accurate kinesthetic feedback of the extent of head and limb movements. These signals contribute to the perception of self-motion during active locomotion by converging with vestibular and visual input on multimodal neurons in the vestibular nuclei and thalamus, which project to cortical multisensory areas in the parietal lobe, e.g. area 7 (see Chap. 13; p. 219). Experimental studies in animals and humans have confirmed the functional significance of arthrokinetic input for arthrokinetic nystagmus and self-motion sensation (p. 446). Questions relevant for the discussion of “somatosensory vertigo” are whether and how the lack or inadequate release of somatosensory input leads to vertigo or disequilibrium. Ataxia and unsteadiness cooccurring with sensory polyneuropathy (p. 447) are readily recognised and generally explained by a deficient sense of lower limb joint position. In contrast, dizziness and unsteadiness suspected to be of cervical origin (socalled cervical vertigo, a controversial disorder of questionable clinical significance which is diagnosed too often) may be due to inadequate or unadapted excess stimulation of neck receptors in cervical pain syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams VC, Richmond FJR, Keane J (1984) Projections from C2 and C3 nerves supplying muscles and skin of the cat neck: a study using transganglionic transport of horseradish peroxidase. J Comp Neurol 230: 142–154

    PubMed  CAS  Google Scholar 

  • Alund M, Larsson SE, Ledin T, Ödkvist L Möller C (1991) Dynamic posturography in cervical vertigo. Acta Otolaryngol (Stockh) Suppl 481: 601–602

    CAS  Google Scholar 

  • Alund M, Ledin T Ödkvist L, Larsson SE (1993) Dynamic posturography among patients with common neck disorders. J Vestib Res 3: 383–389

    PubMed  CAS  Google Scholar 

  • Bàràny R (1906) Augenbewegungen, durch Thoraxbewegungen ausgelöst. Zentralbl Physiol 20: 298–302

    Google Scholar 

  • Bàràny R (1918) Über einige Augen-und Halsmuskelreflexe bei Neugeborenen. Acta Otolaryngol (Stockh) 1: 97–103

    Google Scholar 

  • Barnes GR, Forbat LN (1979) Cervical and vestibular afferent control of oculomotor response in man. Acta Otolaryngol (Stockh) 88: 79–87

    CAS  Google Scholar 

  • Barré JA (1926) Sur une syndrome sympathique cervical postérieur et sa cause fréquente: l’arthrite cervicale. Rev Neurol 45: 1246–1253

    Google Scholar 

  • Bernard C (1865) translated by HC Greene (1961) An introduction to the study of experimental medicine. Collier Books, New York Biemond A (1939) On a new form of experimental position nystagmus in the rabbit and its clinical value. Proc Kon Ned Akad Wet 42: 370–375

    Google Scholar 

  • Biemond A (1940) Further observations about the cervical form of positional-nystagmus and its anatomical base. Proc Kon Ned Akad Wet 43: 901–906

    Google Scholar 

  • Biemond A, De Jong JMBV (1969) On cervical nystagmus and related disorders. Brain 92: 437–458

    PubMed  CAS  Google Scholar 

  • Biguer B, Donaldson IML, Hein A, Jeannerod M (1989) Neck muscle vibration modifies the representation of visual motion and direction in man. Brain 111: 1405–1424

    Google Scholar 

  • Bikeles F, Ruttin E (1915) Über die reflektorischen kompensatorischen Augenbewegungen bei beiderseitiger Ausschaltung des N. vestibularis. Neurol Zbl 34: 807–810

    Google Scholar 

  • Bles W (1981) Stepping around: circularvection and Coriolis effect. In: Long JB, Baddeley AD (eds) Attention and performance, vol IX. Lawrence Erlbaum, Hillsdale, NJ, pp 47–61

    Google Scholar 

  • Bles W, Klören Th, Büchele W, Brandt Th (1983) Somatosensory nystagmus: physiological and clinical aspects. Adv Oto RhinoLaryngol 30: 30–33

    CAS  Google Scholar 

  • Bles W, De Jong JMBV (1982) Cervico-vestibular and visuo- vestibular interaction. Acta Otolaryngol (Stockh) 94: 61–72

    CAS  Google Scholar 

  • Bles W, De Jong JMBV, Rasmussens J (1984) Postural and oculomotor signs in labyrinthine defective subjects. Acta Otolaryngol (Stockh) Suppl 406: 101–104

    CAS  Google Scholar 

  • Bles W, Jelmorini M, Bekkering H, de Graaf B (1995) Arthrokinetic information affects linear self-motion perception. J Vestib Res 5: 109–116

    PubMed  CAS  Google Scholar 

  • Bos JH, Philipszoon AJ (1963) Some forms of nystagmus provoked by stimuli other than accelerations. Pract Oto-Rhino-Laryngol 25: 108–118

    CAS  Google Scholar 

  • Brady JP, Levitt EE (1964) Nystagmus as a criterion of hypnotically induced visual hallucinations. Science 146: 85–86

    PubMed  CAS  Google Scholar 

  • Brandt Th (1988) Sensory function and posture. In: Amblard B, Berthoz A, Clarac F (eds) Posture and gait: development adaptation and modulation. Elsevier, Amsterdam, pp 127–136

    Google Scholar 

  • Brandt Th (1996) Cervical vertigo–reality or fiction? Audiol Neurootol 1: 187–196

    PubMed  CAS  Google Scholar 

  • Brandt Th, Büchele W, Arnold F (1977) Arthrokinetic nystagmus and ego-motion sensation. Exp Brain Res 30: 331–338

    PubMed  CAS  Google Scholar 

  • Brandt Th, Krafczyk S, Malsbenden J (1981) Postural imbalance with head extension: improvement by training as a model for ataxia therapy. Ann NY Acad Sci 374: 636–649

    PubMed  CAS  Google Scholar 

  • Brandt Th, Küchele W, Krafczyk S (1986) Training effects on experimental postural instability: a model for clinical ataxia therapy. In: Bles W, Brandt Th (eds) Disorders of posture and gait. Elsevier, Amsterdam, pp 353–365

    Google Scholar 

  • Bronstein AM, Hood JD (1986) The cervico-ocular reflex in normal subjects and patients with absent vestibular function. Brain Res 373: 399–408

    PubMed  CAS  Google Scholar 

  • Bronstein AM, Morland AB, Ruddock KH, Gresty MA (1995) Recovery from bilateral vestibular failure: implications for visual and cervico-ocular function. Acta Otolaryngol (Stockh) Suppl 520: 405–407

    Google Scholar 

  • Chan YS, Kasper J, Wilson VJ (1987) Dynamics and directional sensitivity of neck muscle spindle responses to head rotation. J Neurophysiol 57: 1716–1729

    PubMed  CAS  Google Scholar 

  • Cohen LA (1961) Role of eye and neck proprioceptive mechanisms in body orientation and motor coordination. J Neurophysiol 24: 1–11

    PubMed  CAS  Google Scholar 

  • Collard M, Conraux C, Thiébaut MS, Thiébaut F (1967) Le nystagmus d’origine cervicale. Rev Neurol 117: 677–688

    PubMed  CAS  Google Scholar 

  • Compere WE (1968) Electronystagmographic findings in patients with “whiplash injuries”. Laryngoscope 78: 1226–1233

    PubMed  Google Scholar 

  • Cooper S, Daniel PM (1963) Muscle spindles in man: their morphology in the lumbricals and the deep muscles of the neck. Brain 86: 563–586

    PubMed  CAS  Google Scholar 

  • de Graaf B, Bos JE, Wich S, Bles W (1994) Arthrokinetic and vestibular information enhance smooth ocular tracking during linear (self-)motion. Exp Brain Res 101: 147–152

    PubMed  CAS  Google Scholar 

  • De Jong PTVM, De Jong JMBV, Cohen B, Jongkees LBW (1977) Ataxia and nystagmus induced by injection of local anesthetics in the neck. Ann Neurol 1: 240–246

    PubMed  Google Scholar 

  • De Jong JMBV, Bles W (1986) Cervical dizziness and ataxia. In: Bles W, Brandt Th (eds) Disorders of posture and gait. Elsevier, Amsterdam, pp 185–206

    Google Scholar 

  • De Kleyn A (1921) Tonische Labyrinth-und Halsreflexe auf die Augen. Pflügers Arch Ges Physiol 186: 82–97

    Google Scholar 

  • De Kleyn A, Stenvers HW (1941) Tonic neck reflexes on the eye muscles in man. Proc Kon Ned Akad Wet 44: 385–396

    Google Scholar 

  • Dichgans J, Bizzi E, Morasso P, Tagliasco V (1974) The role of vestibular and neck afferents during eye-head coordination in the monkey. Brain Res 71: 225–232

    PubMed  CAS  Google Scholar 

  • Dieterich M, Pöllmann W, Pfaffenrath V (1993) Cervicogenic headache: electronystagmography, perception of verticality and posturography in patients before and after C2-blockade. Cephalalgia 13: 285–288

    PubMed  CAS  Google Scholar 

  • Dodge R (1923) Thresholds of rotation. J Exp Psychol 6: 107–137

    Google Scholar 

  • Dutia MB, Hunter MJ (1985) The sagittal vestibulocollic reflex and its interaction with neck proprioceptive afferents in the decere-brate cat. J Physiol 359: 17–29

    PubMed  CAS  Google Scholar 

  • Erulkar SD, Sprague JM, Whitsel BL, Dogan S, Jannetta PJ (1966) Organisation of the vestibular projection to the spinal cord of the cat. J Neurophysiol 19: 626–644

    Google Scholar 

  • Fischer MH (1927) Messende Untersuchungen über die Gegenrollung der Augen und die Lokalisation der scheinbaren Vertikalen bei seitlicher Neigung. Albrecht v Graefes Arch Ophthalmol 118: 633–680

    Google Scholar 

  • Fitz-Ritson D (1985) The direct connections of the C2 dorsal root ganglia in the Macaca irus monkey: relevance to the chiropractic profession. J Manipulative Physiol Ther 8: 147–156

    PubMed  CAS  Google Scholar 

  • Frenzel H (1928) Rucknystagmus als Halsreflex und Schlagfeldverlagerung des labyrinthären Drehnystagmus durch Halsreflexe. Z Hals Nasen Ohrenheilk 21: 177–187

    Google Scholar 

  • Fukuda T (1961) Studies on human dynamic postures from the viewpoint of postural reflexes. Acta Otolaryngol (Stockh) Suppl 161: 1–52

    CAS  Google Scholar 

  • Gamper E (1926) Bau und Leistungen eines menschlichen Mittelhirnwesens (Arhinencephalie mit Encephalocele). Zugleich ein Beitrag zur Teratologie und Fasersystematik II. Klinischer Teil. Z Gesamte Neurol Psychiat 104: 49–120

    Google Scholar 

  • Ganz H, Fend J, Huth FW (1969) Versuche über audiokinetische

    Google Scholar 

  • Augenbewegungen. I. Binaurale Reizung bei Normalhörigen. Z Laryngol Rhino! 49: 625–636

    Google Scholar 

  • Gesell A (1938) The tonic neck reflex in human infant. J Pediatr 13: 455–464

    Google Scholar 

  • Goodwin GM, McCloskey DI, Matthews PBC (1972) The contribution of muscle afferents to kinesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain 95: 705–748

    PubMed  CAS  Google Scholar 

  • Gray LP (1956) Extra-labyrinthine vertigo due to cervical muscle lesions. J Laryngol 70: 352–361

    CAS  Google Scholar 

  • Grigg P, Finerman GA, Riley LH (1973) Joint-position sense after total hip replacement. J Bone Joint Surg Am 55: 1016–1025

    PubMed  CAS  Google Scholar 

  • Güttich A (1940) Über den Antagonismus der Hals-und Bogengangsreflexe bei der Bewegung des menschlichen Auges. Arch Ohr Nasen Kehl Kopf Heil Kd 147: 1–4

    Google Scholar 

  • Hamann KF (1985) Kritische Anmerkung zum sogenannten zervikogenen Schwindel. Laryngol Rhinol Otol 64: 156–157

    CAS  Google Scholar 

  • Hennebert PE (1960) Nystagmus audiocinétique. Acta Otolaryngol (Stockh) 51: 412–415

    CAS  Google Scholar 

  • Hikosaka O, Maeda M (1973) Cervical effects on abducens motoneurons and their interaction with vestibulo-ocular reflex. Exp Brain Res 18: 512–530

    PubMed  CAS  Google Scholar 

  • Hinoki M, Kurosawa R (1964) Studies on vertigo provoked by neck and nape muscles. Notes on vertigo of cervical origin. Some observations on vertiginous attacks caused by injection of procaine solution into neck and nape muscles in man. Oto Rhino Laryngol Clin (Kyoto) 57: 10–20

    Google Scholar 

  • Hinoki M, Terayama K (1966) Physiological role of neck muscles in the occurrence of optic eye nystagmus. Acta Otolaryngol (Stockh) 62: 157–170

    CAS  Google Scholar 

  • Hinoki M, Hine, Kada Y (1971) Neurological studies on vertigo due to whiplash injury. Equi1ib Res Suppl 1: 5–29

    Google Scholar 

  • Hirai N, Hongo T, Sazaki S (1984) A physiological study of identification, axonal course and cerebellar projection of spinocerebellar tract cells in central cervical nucleus of the cat. Exp Brain Res 55: 272–285

    PubMed  CAS  Google Scholar 

  • Holtmann S (1988) Die Analyse zerviko-okulärer Reaktionen unter quantifizierten Reizbedingungen. Habilitationsschrift, LMU München

    Google Scholar 

  • Hubbard DR, Berkoff GM (1993) Myofascial trigger points show spontaneous needle EMG activity. Spine 18: 1803–1807

    PubMed  CAS  Google Scholar 

  • Hülse M (1983) Die zervikalen Gleichgewichtsstörungen.Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hyslop G (1952) Intra-cranial circulatory complication of injuries of the neck. Bull NY Acad Med 28: 729–733

    CAS  Google Scholar 

  • Igarashi M, Alford BR, Watanabe T, Maxian PM (1969) Role of neck proprioceptors for the maintenance of dynamic bodily equilibrium in the squirrel monkey. Laryngoscope 79: 1713–1727

    PubMed  CAS  Google Scholar 

  • Igarashi M, Miyata H, Alford BR, Wright WK (1972) Nystagmus after experimental cervical lesions. Laryngoscope 82: 1609–1621

    PubMed  CAS  Google Scholar 

  • Illert M, Jankowska A, Lundberg A, Odutola A (1981) Integration in descending motor pathways controlling the forelimb in the cat. 7. Effects from the reticular formation on C3–4 propriospinal neurones. Exp Brain Res 42: 269–281

    PubMed  CAS  Google Scholar 

  • Johansson H, Sojka P (1991) Pathophysiological mechanisms involved in the genesis and spread of muscular tension in occupational muscle pain and in chronic musculoskeletal pain syndromes: a hypothesis. Med Hypotheses 35: 196–203

    PubMed  CAS  Google Scholar 

  • Johansson R, Magnusson M, Akesson M (1988) Indentification of human postural dynamics. IEEE Trans Biomed Eng 35: 858–869

    PubMed  CAS  Google Scholar 

  • Jongkees LBWC (1969) Cervical vertigo. Laryngoscope 79: 1473–1484

    PubMed  CAS  Google Scholar 

  • Karlberg M (1995) The neck and human balance: a clinical and experimental approach to “cervical vertigo”. Thesis, University of Lund, Sweden

    Google Scholar 

  • Karlberg M, Magnusson M, Johansson R (1991) Effects of restrained cervical mobility on voluntary eye movements and postural control. Acta Otolaryngol (Stockh) 111: 664–670

    CAS  Google Scholar 

  • Karlberg M, Persson L, Magnusson M (1995) Reduced postural control in patients with chronic cervicobrachial pain syndrome. Gait and Posture 3: 241–249

    Google Scholar 

  • Karlberg M, Johansson R, Magnusson M, Fransson PA (1996a) Dizziness of suspected cervical origin distinguished by posturographic assessment of human postural dynamics. J Vestib Res 6: 37–47

    PubMed  CAS  Google Scholar 

  • Karlberg M, Magnusson M, Malmström EM, Melander A, Moritz U (1996b) Postural and symptomatic improvement after physiotherapy in patients with dizziness of suspected cervical origin. Arch Phys Med Rehabil 77: 874–882

    PubMed  CAS  Google Scholar 

  • Karnath HO (1994) Subjective body orientation in neglect and the interactive contribution of neck muscle proprioception and vestibular stimulation. Brain 117: 1001–1012

    PubMed  Google Scholar 

  • Kotaka S, Croll GA, Bles W (1986) Somatosensory ataxia. In: Bles W, Brandt Th (eds) Disorders of posture and gait. Elsevier, Amsterdam, pp 178–183

    Google Scholar 

  • Lackner JR, Graybiel A (1974) Elicitation of vestibular side effects by regional vibration of the head. Aerospace Med 45: 1267–1272

    PubMed  CAS  Google Scholar 

  • Lindsay KW, Roberts TDM, Rosenberg JR (1976) Asymmetric tonic labyrinth reflexes and the interaction with neck reflexes in the decerebrate cat. J Physiol 261: 583–601

    PubMed  CAS  Google Scholar 

  • Longet FA (1845) Mémoires sur les troubles qui surviennent dans l’équilibration, la station et al locomotion des animaux après la section des parties molles de la nuque. Gaz Med Paris 13: 565–567

    Google Scholar 

  • Lorente de Nô R (1926) Die Grundlagen der Labyrinth-physiologie. Scand Arch Physiol 49: 251–311

    Google Scholar 

  • Magnus R (1924) Körperstellung. Springer, Berlin

    Google Scholar 

  • Magnus R, De Kleyn A (1912) Die Abhängigkeit des Tonus der Extremitätenmuskeln von der Kopfstellung. Pflügers Arch Ges Physiol 145: 455–584

    Google Scholar 

  • Manzoni D, Pompeiano O, Stampacchia G (1979) Cervical control of posture and movements. Brain Res 169: 615–619

    PubMed  CAS  Google Scholar 

  • Matthews PBC (1966) The reflex excitation of the soleus muscle of the decerebrate cat caused by vibration applied to its tendon. J Physiol 184: 450–472

    PubMed  CAS  Google Scholar 

  • McCloskey DJ (1978) Kinesthetic sensibility. Physiol Rev 58: 763–820

    PubMed  CAS  Google Scholar 

  • McCouch GP, Deering ID, Ling TH (1951) Location of receptors for tonic neck reflexes. J Neurophysiol 14: 191–195

    PubMed  CAS  Google Scholar 

  • Mergner T, Anastasopoulos D, Becker W (1982) Neuronal responses to horizontal neck deflection in the group X region of the cat’s medullary brainstem. Exp Brain Res 45: 196–206

    PubMed  CAS  Google Scholar 

  • Mergner T, Deecke L, Becker W, Kornhuber HH (1983a) Vestibular-proprioceptive interactions: Neurophysiology and psychophysics. In: IT Horn (ed) Fortschritte der Zoologie, Bd. 28. Multimodal convergences in sensory systems. Fischer, Stuttgart

    Google Scholar 

  • Mergner T, Nardi GL, Becker W, Deecke L (1983b) The role of the canal-neck interaction for the perception of horizontal trunk and head rotation. Exp Brain Res 49: 198–208

    PubMed  CAS  Google Scholar 

  • Mergner T, Siebold C, Schweigart G, Becker W (1991) Human perception of horizontal trunk and head rotation in space during vestibular and neck stimulation. Exp Brain Res 85:389–404 Moser M (1974)

    Google Scholar 

  • Zervicalnystagmus und seine diagnostische Bedeutung. HNO 22:350–355

    Google Scholar 

  • Norré ME, Stevens A (1987) Cervical vertigo. Acta Oto Rhino Laryngol Belg 41: 436–452

    Google Scholar 

  • Ommaya AK, Faas, F, Yarnell P (1968) Whiplash injury and brain damage. JAMA 204: 285–289

    PubMed  CAS  Google Scholar 

  • Paulus W, Straube A, Brandt Th (1987) Visual postural performance after loss of somatosensory and vestibular function. J Neurol Neurosurg Psychiatry 50: 1542–1545

    PubMed  CAS  Google Scholar 

  • Persson L, Karlberg M, Magnusson M (1996) Effects of different treatment on postural performance in patients with cervical root compression. J Vestib Res 6: 439–453

    PubMed  CAS  Google Scholar 

  • Peterson BW, Goldberg J, Bilotto G, Fuller JH (1985) Cervicocollic

    Google Scholar 

  • reflex: Its dynamic properties and interaction with vestibular reflexes. J Neurophysiol 54: 90–109

    Google Scholar 

  • Richmond FJR, Bakker DA (1982) Anatomical organization and sensory receptor content of soft tissues surrounding upper cervical vertebrae in the cat. J Neurophysiol 48: 49–61

    PubMed  CAS  Google Scholar 

  • Roberts TDM (1973) Reflex balance. Nature 244: 158–185

    Google Scholar 

  • Rubin W (1973) Whiplash with vestibular involvement. Arch Otolaryngol 97: 85–87

    PubMed  CAS  Google Scholar 

  • Sawyer RN, Thurston SE, Becker KR, Ackely CV, Siedman SH, Leigh RJ (1994) The cervico-ocular reflex of normal human subjects in response to transient and sinusoidal trunk rotations. J Vestib Res 4: 245–249

    PubMed  Google Scholar 

  • Schaltenbrand G (1925) Normale Bewegungs-und Lagereaktionen bei Kindern. Dtsch Z Nervenheilkd 87: 23–59

    Google Scholar 

  • Scherer H (1985) Halsbedingter Schwindel. Arch Oto Rhino Laryngol Suppl 11: 107–124

    Google Scholar 

  • Schubert K (1950) Schwindel und Sympathikus. Arch Ohr Nasen Kehlk Heilkd 156: 489–499

    Google Scholar 

  • Solomon D, Cohen B (1992a) Stabilization of gaze during circular locomotion in light. I. Compensatory head and eye nystagmus in the running monkey. J Neurophysiol 67: 1146–1157

    Google Scholar 

  • Solomon D, Cohen B (1992b) Stabilization of gaze during circular locomotion in light. II. Contribution of velocity storage to compensatory eye and head nystagmus in the running monkey. J Neurophysiol 67: 1158–1169

    Google Scholar 

  • Stenvers HW (1924) Über die klinische Bedeutung der kompensatorischen Augenbewegungen bei Kopfdrehung. Z Ges Neurol Psychiat 92: 484–486

    Google Scholar 

  • Stenvers HW (1936) Haltungs-und Stützreflexe. In: Bumke D, Foerster O (eds) Handbuch der Neurologie, vol V/3. Allgemeine Neurologie, Springer, Berlin, pp 523–554

    Google Scholar 

  • Strupp M, Arbusow V, Dieterich M, Sautier W, Brandt Th (1998) Perceptual and oculomotor effects of neck muscle vibration in vestibular neuritis. Ipsilateral somatosensory substitution of vestibular function. Brain 121: 677–685

    Google Scholar 

  • Suzuki J, Takemori S (1971) Eye movements induced from the spinal nerves. Equilib Res Suppl 2: 33–40

    Google Scholar 

  • Taylor JL, McCloskey DI (1988) Proprioception in the neck. Exp Brain Res 70: 351–360

    PubMed  CAS  Google Scholar 

  • Taylor JL, McCloskey DI (1991) Illusions of head and visual target displacement induced by vibration of neck muscles. Brain 114: 755–759

    PubMed  Google Scholar 

  • Toglia JU (1976) Acute flexion-extension injury of the neck. Neurology 26: 808–814

    PubMed  CAS  Google Scholar 

  • Torres F, Shapiro SK (1961) Electroencephalograms in whiplash injuries. Arch Neurol 5: 28–35

    PubMed  CAS  Google Scholar 

  • von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip ( Wechselwirkungen zwischen Zentralnervensystem und Peripherie ). Naturwissenschaften 37: 464–476

    Google Scholar 

  • von Stein St (1910) Schwindel (Autokinesis externa et interna). Lessier, Leipzig

    Google Scholar 

  • Voss H (1958) Zahl und Anordnung der Muskelspindeln in den unteren Zungenbeinmuskeln, dem M. sternocleidomastoideus und den Bauch-und tiefen Nackenmuskeln. Anat Anz 105: 265–275

    PubMed  CAS  Google Scholar 

  • Wapner S, Werner H, Chandler KA (1951) Experiments on sensory-

    Google Scholar 

  • tonic field theory of perception. J Exp Psychol 42:341–345

    Google Scholar 

  • Weeks V, Travelli J (1955) Postural vertigo due to trigger areas in sterno-cleidomastoid muscle. J Pediatr 47: 315–327

    PubMed  CAS  Google Scholar 

  • Weiland W (1912) Hals-und Labyrinthreflexe beim Kaninchen: ihr Einfluß auf den Muskeltonus und die Stellung der Extremitäten. Pflügers Arch Ges Physiol 147: 1–27

    Google Scholar 

  • Wilson VJ, Boyle R, Fukishima K, Rose PK, Shinoda Y, Sugiuchi Y, Uchino Y (1995) The vestibulocollic reflex. J Vestib Res 5: 147–170

    PubMed  CAS  Google Scholar 

  • Zangemeister WH, Stark L (1983) Pathological types of eye and head gaze coordination in neurological disorders. Neurol Ophthalmol 3: 259–276

    Google Scholar 

  • Zikmund V (1966) Oculomotor activity during visual imagery of a moving stimulus pattern. Stud Psychol (Praha) 8: 254–272

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag London

About this chapter

Cite this chapter

Brandt, T. (2003). Somatosensory vertigo. In: Vertigo. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3801-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3801-8_30

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-40500-1

  • Online ISBN: 978-1-4757-3801-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics