Vertigo pp 409-440 | Cite as

Visual vertigo: visual control of motion and balance

  • Thomas Brandt


Vision contributes significantly to spatial orientation, self-motion perception, and postural balance. Therefore, either unusual visual stimulation or visual sensory dysfunction may cause distressing vertigo and disequilibrium, such as height vertigo or “visual ataxia” associated with the sudden onset of an extraocular eye muscle paresis.


Motion Sickness Visual Scene Motion Perception Postural Balance Optokinetic Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler FH (1941) Ocular vertigo. Am Acad Ophthalmol Otolaryngol 46: 27–32Google Scholar
  2. Angel RW, Malenka RC (1982) Velocity dependent suppression of cutaneous sensitivity during movement. Exp Neurol 77: 266–274PubMedGoogle Scholar
  3. Arslan M, Molinari GA (1965) Modifications of the activity of the vestibular nuclei in the cat following stimulation of the ternporal lobe. Acta Otolaryngol (Stockh) 59: 338–344Google Scholar
  4. Atkin A, Bender MB (1968) Ocular stabilization during oscillatory head movements. Arch Neurol (Chicago) 19: 559–566Google Scholar
  5. Aubert H (1886) Die Bewegungsempfindung. Arch Ges Physiol 39: 347–370Google Scholar
  6. Bardy BG, Warren WH, Kay BA (1996) Motion parallax is used to control postural sway during walking. Exp Brain Res 111:271–282 Barret GV, Thornton CL (1968) Relationship between perceptual style and simulator sickness. J Appl Psychol 52: 304–308Google Scholar
  7. Baumeyer F (1953) Der Höhenschwindel. Nervenarzt 24: 467–474Google Scholar
  8. Bender MB (1965) Oscillopsia. Arch Neurol (Chicago) 13: 204–213Google Scholar
  9. Bender MB, Feldman M (1967) Visual illusions during head move-ment in lesions of the brain stem. Arch Neurol (Chicago) 17: 354–364Google Scholar
  10. Benson AJ, Barnes GR (1978) Vision during angular oscillation: the dynamic interaction of visual and vestibular mechanisms. Aviat Space Environ Med 49: 340–345PubMedGoogle Scholar
  11. Berthoz A, Pavard B, Young LR (1975) Perception of linear horizontal self-motion induced by peripheral vision (linearvection). Basic characteristics and visual-vestibular interactions. Exp Brain Res 23: 471–489Google Scholar
  12. Bles W, Kapteyn TS, DeWit G (1977) Effects of visual-vestibular interaction on human posture. Adv Oto-Rhino-Laryngol 22: 111–118Google Scholar
  13. Bles W, Kapteyn TS. Brandt Th, Arnold F (1980) The mechanism of physiological height vertigo. Il. Posturography. Acta Otolaryngol (Stockh) 89: 534–540Google Scholar
  14. Bottini G, Sterzi R, Paulesu E, Vallar G, Cappa SF, Erminio F, Passingham RE, Frith CD, Frackowiak RSJ (1994) Identification of the central vestibular projections in man: a positron emission tomography activation study. Exp Brain Res 99: 164–169PubMedGoogle Scholar
  15. Brandt Th (1982) The relationship between retinal image slip, oscillopsia and postural imbalance. In: Lennerstrand G, Zee DS, Keller EL (eds) Functional basis of ocular motility disorders. Pergamon Press, Oxford, pp 379–385Google Scholar
  16. Brandt Th (1984) Visual vertigo and acrophobia. In: Dix MRGoogle Scholar
  17. Hood JD (eds). Vertigo. Wiley, Chichester, pp 439–466Google Scholar
  18. Brandt Th, Büchele W (1979) Ocular myasthenia: visual distur-bance of posture and gait. Agressologie 20: 195–196Google Scholar
  19. Brandt Th, Daroff RB (1980) The multisensory physiological and pathological vertigo syndromes. Ann Neurol 7: 195–203PubMedGoogle Scholar
  20. Brandt Th, Dieterich M (1986) Peripheral ocular motor palsy impairs motion perception. In: Keller EL, Zee DS (eds) Adaptive processes in visual and oculomotor systems. Pergamon Press, Oxford, pp 457–463Google Scholar
  21. Brandt Th, Dieterich M (1988) Oscillopsia and motion perception. In: Kennard C, Clifford Rose F (eds) Physiological aspects of clinical neuro-ophthalmology. Chapman and Hall, London, pp 321–339Google Scholar
  22. Brandt Th, Wist ER, Dichgans J (1971) Optisch induzierte PseudoCoriolis-Effekte and Circularvektion: Ein Beitrag zur optischvestibulären Interaktion. Arch Psychiat Nervenkr 214: 365–389Google Scholar
  23. Brandt Th, Dichgans J, König E (1973) Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp Brain Res 16: 476–491PubMedGoogle Scholar
  24. Brandt Th, Dichgans J, Büchele W (1974a) Motion habituation: inverted self-motion perception and optokinetic after-nystagmus. Exp Brain Res 21: 337–352PubMedGoogle Scholar
  25. Brandt Th, Dichgans J, Wagner W (1974b) Drug effectiveness on experimental optokinetic and vestibular motion sickness. Aerospace Med 45: 1291–1297PubMedGoogle Scholar
  26. Brandt Th, Arnold F, Bles W, Kapteyn TS (1980) The mechanism of physiological height vertigo. I Theoretical approach and psychophysics. Acta Otolaryngol (Stockh) 89: 513–523Google Scholar
  27. Brandt Th, Esser J, Büchele W, Krafczyk S (1982) “Visuo-spinal ataxia” caused by disorders of eye movements. In: Roucoux A,Crommelinck M (eds) Physiological and pathological aspects of eye movements. W Junk, The Hague, pp 425–430Google Scholar
  28. Brandt Th, Paulus W, Straube A (1985) Visual acuity, visual field and visual scene characteristics affect postural balance. In: Igarashi M, Black FO (eds) Vestibular and visual control of posture and locomotor equilibrium. Karger, Basel, pp 93–98Google Scholar
  29. Brandt Th, Paulus W, Straube A (1986) Vision and posture. In: Bles W, Brandt Th (eds) Disorders in posture and gait. Elsevier, Amsterdam, pp 157–176Google Scholar
  30. Brandt Th, Bartenstein P, Danek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction: visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121: 1749–1758PubMedGoogle Scholar
  31. Brickner R (1936) Oscillopsia: a new symptom commonly occurring in multiple sclerosis. Arch Neurol Psychiatr (Chicago) 36: 586–589Google Scholar
  32. Bronstein AM (1995) Visual vertigo syndrome: clinical and posturography findings. J Neurol Neurosurg Psychiatry 59: 472–476PubMedGoogle Scholar
  33. Bronstein AM (1996) Visually induced paroxysmal nausea and vomiting as presenting manifestation of multiple sclerosis. J Neurol Neurosurg Psychiatry 60: 701Google Scholar
  34. Bronstein AM, Buckwell D (1997) Automatic control of postural sway by visual motion parallax. Exp Brain Res 113: 243–248PubMedGoogle Scholar
  35. Büchele W, Brandt Th, Degner D (1983) Ataxia and oscillopsia in downbeat-nystagmus vertigo syndrome. Adv Oto-RhinoLaryngol 30: 291–297Google Scholar
  36. Büttner U, Buettner UW (1978) Parietal cortex (2v) neuronal activity in the alert monkey during natural vestibular and optokinetic stimulation. Brain Res 153: 392–397PubMedGoogle Scholar
  37. Büttner U, Henn V (1981) Circularvection: psychophysics and single unit recordings in the monkey. Ann NY Acad Sci 374: 274–283PubMedGoogle Scholar
  38. Chapin JK, Woodward DJ (1981) Modulation of sensory responsiveness of single somatosensory cortical cells during movement and arousal behaviours. Exp Neurol 72: 164–178PubMedGoogle Scholar
  39. Cheung BSK, Howard IP, Nedzelski JM, Landolt JP (1989) Circularvection about earth-horizontal axes in bilateral labyrinthine-defective subjects. Acta Otolaryngol (Stockh) 108: 336–344Google Scholar
  40. Cheung BSK, Howard IP, Money KE (1991) Visually-induced sickness in normal and bilaterally labyrithine-defective subjects. Aviat Space Environ Med 62: 527–531PubMedGoogle Scholar
  41. Coquery J-M (1978) Role of active movement in control of afferent input from skin in cat and man. In: Gordon G (ed) Active touch: the mechanism of recognition of objects by manipulation. Elmsford, New York, pp 161–169Google Scholar
  42. Coulter JD (1973) Sensory transmission through lemniscal pathway during voluntary movement in the cat. J Neurophysiol 37: 831–845Google Scholar
  43. Crampton GH,Young FA (1953) The differential effects of a rotary visual field on susceptibles and nonsusceptibles to motion sickness. J Comp Physiol Psychol 46: 451–453PubMedGoogle Scholar
  44. Darwin E (1794) Zoonomia or, the laws of organic life. Vol 1, of Vertigo. J. Johnson, London, pp 227–239Google Scholar
  45. Davidson PW, Whitson TT (1973) Some effects of texture density on visual cliff behaviour of the domestic chick. J Comp Physiol Psychol 84: 522–526PubMedGoogle Scholar
  46. De Hardt DC (1969) Visual cliff behaviour of rats as a function of pattern size. Psychonom Sci 15: 268–269Google Scholar
  47. Desnoes PH (1926) Seasickness. JAMA 86: 319–324Google Scholar
  48. Dichgans J, Brandt Th (1973) Optokinetic motion sickness and pseudo-Coriolis-effects induced by moving visual stimuli. Acta Otolaryngol (Stockh) 76: 339–348Google Scholar
  49. Dichgans J, Brandt Th (1978) Visual-vestibular interaction: effects on self-motion perception and postural control. In: Held R, Leibowitz HW, Teuber H-L (eds) Handbook of sensory physiology, vol 8. Perception. Springer, Berlin Heidelberg New York, pp 755–804Google Scholar
  50. Dichgans J, Schmidt CL, Graf W (1973) Visual input improves the speedometer function of the vestibular nuclei in the goldfish. Exp Brain Res 18: 319–322PubMedGoogle Scholar
  51. Dichgans J, Diener HC, Brandt Th (1974) Optokinetic-graviceptive interaction in different head positions. Acta Otolaryngol (Stockh) 78: 391–398Google Scholar
  52. Dichgans J, Held R, Young LR, Brandt Th (1972) Moving visual scenes influence the apparent direction of gravity. Science 178: 1217–1219PubMedGoogle Scholar
  53. Dichgans J, Mauritz KH, Allum JHJ, Brandt Th (1976) Postural sway in normals and atactic patients: analysis of the stabilizing and destabilizing effects of vision. Agressologie 17: 15–24PubMedGoogle Scholar
  54. Diener HC, Wist ER, Dichgans J, Brandt Th (1976) The spatial fre- quency effect on perceived velocity. Vision Res 16: 169–176PubMedGoogle Scholar
  55. Dieterich M, Brandt Th (1987) Impaired motion perception in congenital nystagmus and acquired ocular motor palsy. Clin Vision Sci 1: 337–345Google Scholar
  56. Dieterich M, Grünbauer WM, Brandt T (1998) Direction-specific impairment of motion perception and spatial orientation in downbeat and upbeat nystagmus. Neurosci Lett 245: 29–32PubMedGoogle Scholar
  57. Dietz V (1986) Afferent and efferent control of posture and gait. In: Bles W, Brandt Th (eds) Disorders of posture and gait, Elsevier, Amsterdam, pp 69–81Google Scholar
  58. DiZio P, Li W, Lackner JR, Matin L (1997) Combined influences of gravitoinertial force level and visual field pitch on visually perceived eye level. J Vestib Res 7: 381–392PubMedGoogle Scholar
  59. Droulez J, Berthoz A, Vidal PP (1985) Use and limits of visual vestibular interaction in the control of posture. In: Igarashi M, Black FO (eds) Vestibular and visual control on posture and locomotor equilibrium. Karger, Basel, pp 14–21Google Scholar
  60. Dupont P, Orban GA, De Bruyn B, Verbruggen A, Mortelmans L (1994) Many areas in the human brain respond to visual motion. J Neurophysiol 72: 1420–1424PubMedGoogle Scholar
  61. Edwards AS (1946) Body sway and vision J Exp Psychol 36: 526–535Google Scholar
  62. Eggert T, Straube A, Schroeder K (1997) Visually induced motion perception and visual control of postural sway in congenital nystagmus. Behav Brain Res 88: 161–168PubMedGoogle Scholar
  63. Fischer MH, Kornmüller EE (1930) Optokinetisch ausgelöste Bewegungswahrnehmungen und optokinetischer Nystagmus. J Psychol Neurol 41: 273–308Google Scholar
  64. Friberg L, Olsen TS, Roland PE, Paulson OB, Lassen NA (1985) Focal increase of blood flow in the cerebral cortex of man during vestibular stimulation. Brain 108: 609–623PubMedGoogle Scholar
  65. Gantchev GN, Draganova N, Dunev S (1985) Influence of the stabilogram and statokinesigram visual feedback upon the body oscillations. In: Igarashi M, Black FO (eds) Vestibular and visual control on posture and locomotor equilibrium. Karger, Basel, pp 135–138Google Scholar
  66. Ghez G, Pisa M (1972) Inhibition of afferent transmission in cuneate nucleus during voluntary movement in the cat. Brain Res 40: 145–151PubMedGoogle Scholar
  67. Gildenberg PL, Hassler R (1971) Influence of stimulation of the cerebral cortex on vestibular nuclei units in the cat. Exp Brain Res 14: 77–94PubMedGoogle Scholar
  68. Goddé-Jolly D, Larmande A (1973) Les Nystagmus. Masson, Paris Gramowski K-H (1962) Die Bedeutung der Vestibularisprüfung bei Tauglichkeitsuntersuchungen von Höhenarbeitern. HNO10: 279–281Google Scholar
  69. Graybiel A (1970) Susceptibility to acute motion sickness in blind persons. Aerospace Med 41: 650–653PubMedGoogle Scholar
  70. Gresty MA, Hess K, Leech J (1977) Disorders of the vestibuloocular reflex producing oscillopsia and mechanisms compensating for loss of labyrinthine function. Brain 100: 693–716PubMedGoogle Scholar
  71. Groen JJ (1961) The problems of the spinning top applied to the semicircular canals. Confin Neurol (Basel) 21: 454–455Google Scholar
  72. Grüsser OJ, Pause M, Schreiter U (1982) Neuronal responses in the parieto-insular vestibular cortex of alert Java monkeys (Macaca fascicularis). In: Roucoux A, Crommelinck M (eds) Physiological aspects of eye movements. W. Junk, The Hague, pp 251–270Google Scholar
  73. Grösser OJ, Pause M, Schreiter U (1990a) Localization and responses of neurons in the parieto-insular vestibular cortex of the awake monkeys (Macaca fascicularis). J Physiol 430: 537–557Google Scholar
  74. Grösser OJ, Pause M, Schreiter U (1990b) Vestibular neurons in the parieto-insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. J Physiol 430: 559–583Google Scholar
  75. Heide W, Fahle M, Koenig E, Dichgans J, Schroth G (1990) Impairment of vertical motion detection and downgaze palsy due to rostral midbrain infarction. Neurology 237: 432–440Google Scholar
  76. Helmholtz H von (1896) Handbuch der physiologischen Optik. Voss, LeipzigGoogle Scholar
  77. Henn V, Young LR (1975) Ernst Mach on the vestibular organ 100 years ago. J Otorhinolaryngol 37: 138–148Google Scholar
  78. Hofe K von (1941) Untersuchungen über das Verhalten eines zentralen optischen Nachbildes bei und nach unwillkürlichen Bewegungen sowie mechanischen Verlagerungen des Auges. Graefes Arch Ophthalmol 144: 164–169Google Scholar
  79. Hu S, Glaser KM, Hoffman TS, Stanton TM, Gruber MB (1996) Motion sickness susceptibility to optokinetic rotation correlates to past history of motion sickness. Aviat Space Environ Med 67: 320–324PubMedGoogle Scholar
  80. Hu S, Davis MS, Klose AH, Zabinsky EM, Meux SP, Jacobsen HA, Westfall JM, Gruber MB (1997) Effects of spatial frequency of a vertically striped rotating drum on vection-induced motion sickness. Aviat Space Environ Med 68: 306–311PubMedGoogle Scholar
  81. Iwase Y, Uchida T, Hashimoto M, Takegami T, Suzuki N (1979) Body sway stabilization induced during saccadic eye movement. Postural Refl Body Equilibr 1: 123–129Google Scholar
  82. James W (1882) The sense of dizziness in deaf-mutes. Am J Otol 4: 239–254Google Scholar
  83. Kapteyn TS, Bles W (1977) Circularvection and human posture. Relation between the reactions to various stimuli. Agressologie 18: 335–339Google Scholar
  84. Kapteyn TS, Bles W, Brandt Th, Wist ER(1979) Visual stabilization of posture: effect of light intensity and stroboscopic surround illumination. Agressologie 20: 191–192Google Scholar
  85. Kennedy RS, Stanney KM (1996) Postural instability induced by virtual reality exposure: development of a certification protocol. Int J Hum Comp Interact 8: 25–47Google Scholar
  86. Kennedy RS, Hettinger LJ, Harm DL, Ordy JM, Dunlap WP (1996) Psychophysical scaling of circular vection (CV) produced by optokinetic (OKN) motion: individual differences and effects of practice. J Vestib Res 6: 331–341PubMedGoogle Scholar
  87. Khan OA, Sandoz GM, Olek MJ (1995) Visually induced paroxysmal nausea and vomiting as presenting manifestations of multiple sclerosis (letter). J Neurol Neurosurg Psychiatry 59: 342–343PubMedGoogle Scholar
  88. Kikukawa M, Taguchi K (1985) Characteristics of body sway during saccadic eye movement in patients with peripheral vestibular disorders. In: Igarashi M, Black FO (eds) Vestibular and visual control on posture and locomotor equilibrium. Karger, Basel, pp 335–359Google Scholar
  89. Kobrak F (1924) Über den Bergschwindel und andere praktisch wichtige Schwindelphänomene. Mschr Ohrenheilk 58:126–134 Kohler I (1956) Die Methode des Brillenversuches in der Wahrnehmungspsychologie mit Bemerkungen zur Lehre der Adaptation. Z Exp Angew Psychol 3: 381–417Google Scholar
  90. Kommerell G, Mehdorn E (1982) Is an optokinetic defect cause of congenital nystagmus? In: Lennerstrand G, Zee DS, Keller EL (eds) Functional basis of ocular motility disorders. Pergamon Press, Oxford, pp 159–167Google Scholar
  91. Kommerell G, Horn R, Bach M (1986) Motion perception in congenital nystagmus. In: Keller EL, Zee DS (eds) Adaptive processes in visual and oculomotor systems. Pergamon Press, Oxford, pp 485–491Google Scholar
  92. Lee DN, Aronson E (1974) Visual proprioceptive control of standing in human infants. Perception Psychophys 15: 529–532Google Scholar
  93. Leibowitz HW (1955) The relation between the rate threshold for the perception of movement and luminance for various durations of exposure. J Exp Psychol 49: 209–214PubMedGoogle Scholar
  94. Leibowitz HW, Shupert-Rodemer C, Dichgans J (1979) The independence of dynamic spatial orientation from luminance and refractive error. Perception Psychophys 25: 75–79Google Scholar
  95. Leibowitz HW, Post RB, Brandt Th, Dichgans J (1982) Implications of recent developments in dynamic spatial orientation and visual resolution for vehicle guidance In: Wertheim AH, Wagenaar WA, Leibowitz HW (eds) Tutorials on motion perception. Plenum Press, New York, pp 231–260Google Scholar
  96. Leigh RJ, Dell’Osso LF, Yaniglos SS, Thurston SE (1988) Oscillopsia, retinal image stabilization and congenital nystagmus. Invest Ophthalmol Vis Sci 29: 279–282PubMedGoogle Scholar
  97. Lestienne F, Soechting JF, Berthoz A (1977) Postural readjustments induced by linear motion of visual scenes. Exp Brain Res 28: 363–384PubMedGoogle Scholar
  98. Lishman JR, Lee DN (1973) The autonomy of visual kinaesthesis. Perception 2: 287–294PubMedGoogle Scholar
  99. Mach E (1875) Grundlinien der Lehre von den Bewegungsempfindungen. Engelmann, LeipzigGoogle Scholar
  100. Melvill-Jones G (1977) Plasticity in the adult vestibulo-ocular reflex arc. Phil Trans R Soc Lond 278: 319–334Google Scholar
  101. Miller JW, Goodson JE (1960) Motion sickness in a helicopter simulator. Aerospace Med 31: 204–212PubMedGoogle Scholar
  102. Money KE (1970) Motion sickness. Physiol Rev 50: 1–39PubMedGoogle Scholar
  103. Mueller C, Kornilova L, Wiest G, Deecke L (1994) Visually induced vertical self-motion sensation is altered in microgravity adap-tation. J Vestib Res 4: 161–167PubMedGoogle Scholar
  104. Nashner LM (1985) Strategies for organization of human posture. In: Igarashi M, Black FO (eds) Vestibular and visual control of posture and locomotor equilibrium. Karger, Basel, pp 1–8Google Scholar
  105. Nougier V, Bard C, Fleury M, Teasdale N (1997) Contribution of central and peripheral vision to the regulation of stance. Gait Posture 5: 34–41Google Scholar
  106. Oblak B, Gregoric M, Gyergyek L (1985) Effects of voluntary eye saccades on body sway. In: Igarashi M, Black FO (eds) Vestibular and visual control on posture and locomotor equilibrium. Karger, Basel, pp 122–126Google Scholar
  107. Paige GD (1994) Senescence of human visual-vestibular interactions: smooth pursuit, optokinetic, and vestibular control of eye movements with aging. Exp Brain Res 98: 355–372PubMedGoogle Scholar
  108. Parker DM (1971) A psychophysiological test for motion sickness susceptibility. J Genet Psychol 85: 87–92Google Scholar
  109. Paulus W, Straube A, Brandt Th (1984) Visual stabilization of posture: physiological stimulus characteristics and clinical aspects. Brain 107: 1143–1163PubMedGoogle Scholar
  110. Paulus W, Straube A, Brandt Th (1987) Visual postural performance after loss of somatosensory and vestibular function. J Neurol Neurosurg Psychiatry 50: 1542–1545PubMedGoogle Scholar
  111. Probst Th, Brandt Th, Degner D (1986) Object-motion detection by concurrent self-motion perception: psychophysics of a new phenomenon. Behav Brain Res 22: 1–11PubMedGoogle Scholar
  112. Probst Th, Krafczyk S, Brandt Th, Wist ER (1984) Interaction between perceived self-motion and object-motion impairs vehicle guidance. Science 225: 536–538PubMedGoogle Scholar
  113. Purkinje JE (1820) Beiträge zur näheren Kenntnis des Schwindels aus heautognostischen Daten. Med JB (Österreich) 6: 79–125Google Scholar
  114. Reason JT, Diaz E (1971) Simulator sickness in passive observers. Ministry of Defence, FPRC report no. 1310. HMSO, LondonGoogle Scholar
  115. Redfern MS, Furman JM (1994) Postural sway of patients with vestibular disorders during optic flow. J Vestib Res 4: 221–230PubMedGoogle Scholar
  116. Regan D, Beverly Kl (1979) Binocular and monocular stimuli for motion in depth: changing disparity and changing size feed the same motion-in-depth stage. Vision Res 19: 1331–1392PubMedGoogle Scholar
  117. Rennert H (1990) Höhenschwindel, Höhenangst und Höhenphobie. Psychiat Neurol med Psychol 42: 333–339PubMedGoogle Scholar
  118. Romberg MH (1846) Lehrbuch der Nervenkrankheiten des Menschen. Duncker, BerlinGoogle Scholar
  119. Rushton DN, Rushton RH (1984) An optical method for approximate stabilization of vision of the real world. J Physiol (Lond) 357: 3 PGoogle Scholar
  120. Rushton DN, Rothwall IC, Craggs MD (1981) Gating of somatosensory evoked potentials during different kinds of movements in man. Brain 104: 465–491PubMedGoogle Scholar
  121. Rushton DN, Brandt Th, Paulus W, Krafczyk S (1989) Postural sway during retinal image stabilization. J Neurol Neurosurg Psychiatry 52: 376–381PubMedGoogle Scholar
  122. Schubert G (1931) Über die physiologischen Auswirkungen der Corioliskräfte bei Trudelbewegungen des Flugzeuges. Acta Otolaryngol (Stockh) 16: 39–47Google Scholar
  123. Shallo-Hoffmann J, Faldon ME, Acheson JF, Gresty MA (1996) Temporally directed deficits for the detection of visual motion in latent nystagmus: evidence for adaptive processing. Neuroophthalmology 16: 343–349Google Scholar
  124. Stavenski AA, Hansen RN, Steinman RH, Winterson BJ (1979) Quality of retinal image stabilization during small natural and artificial body rotations in man. Vision Res 19: 675–653Google Scholar
  125. Steinman RM, Collewijn H (1980) Binocular retinal image motion during active head rotation. Vision Res 20: 415–429PubMedGoogle Scholar
  126. Straube A, Brandt Th (1987) Importance of the visual and vestibular cortex for self-motion perception in man (circularvection). Human Neurobiol 6: 211–218Google Scholar
  127. Straube A, Brandt Th, Probst Th (1987) Importance of the visual cortex for postural stabilization: inferences from pigeon and frog data. Human Neurobiol 6: 39–43Google Scholar
  128. Straube A, Paulus W, Quintern J, Brandt Th (1988) Visual ataxia induced by eye movements: posturographic measurements in normals and patients with ocular motor disorders. Clin Vision Sci 4: 107–113Google Scholar
  129. Straube A, Bötzel K, Hawken M, Paulus W, Brandt Th (1989) Postural control in the elderly: differential effects of visual, vestibular and somatosensory input. In: Amblard B, Berthoz A, Clarac F (eds) Posture and gait: development, adaptation and modulation. Elsevier, Amsterdam, pp 105–114Google Scholar
  130. Straube A, Paulus W, Brandt T (1990) Influence of visual blur on object-motion detection, self-motion detection and postural balance. Behav Brain Res 40: 1–6PubMedGoogle Scholar
  131. Straube A, Krafcyzk S, Paulus W, Brandt T (1994) Dependence of visual stabilization of postural sway on the cortical magnification factor of restricted visual fields. Exp Brain Res 99:501–506 Travis RC (1945) An experimental analysis of dynamic equilibrium. J Exp Psychol 35: 216–234Google Scholar
  132. Ungs TJ (1989) The occurrence of the vection illusion among helicopter pilots while flying over water. Aviat Space Environ Med 60: 1099–1101PubMedGoogle Scholar
  133. Virsu V, Rovamo I, Laurinen P, Näsänen R (1982) Temporal contrast sensitivity and cortical magnification. Vision Res 22: 1211–1217PubMedGoogle Scholar
  134. Walk RD, Gibson EG (1961) A comparative and analytical study of visual depth perception. Psychol Monogr 75 (15, whole no. 519) Walk RD, Walters CP (1974) Importance of texture-density preferences and motion parallax for visual depth discrimination by rats and chicks. J Comp Physiol Psychol 86: 309–315Google Scholar
  135. Walk RD, Gibson EJ, Tighe TJ (1957) Behaviour of light-and-darkreared rats on a visual cliff. Science 126: 80–81PubMedGoogle Scholar
  136. Wenzel R, Bartenstein P, Dieterich M, Danek A, Weindl A, Minoshima S, Ziegler S, Schwaiger M, Brandt Th (1996) Deactivation of human visual cortex during involuntary ocular oscillations: a PET activation study. Brain 119: 101–110PubMedGoogle Scholar
  137. Wertheim AH (1981) On the relativity of perceived motion. Acta Psychol 48: 97–110Google Scholar
  138. Wertheim AH (1994) Motion perception during self-motion: the direct versus inferential controversy revisited. Behav Brain Sci 17: 293–355Google Scholar
  139. Wist ER, Brandt Th, Krafczyk S (1983) Oscillopsia and retinal slip: evidence supporting a clinical test. Brain 106: 153–168PubMedGoogle Scholar
  140. Witkin HA (1949) Perception of body position and of the position of the visual field. Psychol Monogr 63: 1–46Google Scholar
  141. Wood RW (1895) The “haunted swing” illusion. Psychol Rev 2: 277–278Google Scholar
  142. Young LR, Oman CM, Dichgans J (1975) Influence of head orien- tation on visually induced pitch and roll sensation. Aviat Space Environ Med 46: 264–268PubMedGoogle Scholar
  143. Zee DS (1978) Ophthalmoscopy in examination of patients with vestibular disorders. Ann Neurol 3: 373–374PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2003

Authors and Affiliations

  • Thomas Brandt
    • 1
  1. 1.Neurologische Klinik, Klinikum GroßhadernLudwig-Maximillians-UniversitätMunichGermany

Personalised recommendations