Vertigo pp 351-354 | Cite as

Vertigo due to barotrauma

  • Thomas Brandt


This type of vertigo is associated with exposure to alterations in ambient pressure, either an increase (diving, pressure chamber, explosions) or a decrease (flying, altitude chambers). The atmosphere exerts an absolute pressure of 760 mmHg (1013 mbar) at sea level, the standard one atmosphere absolute (1 ATA) pressure. Changes of pressure in water increase linearly with increasing depth: one atmosphere is added for each 10 m. This increased pressure is balanced by breathing air delivered at the new ambient pressure and by equalizing the pressure in all gas-containing body cavities to ambient (Farmer and Thomas 1976; Margulies 1987). The volume of gas varies inversely with ambient pressure. It is this pressure-volume relationship that mostly causes barotrauma. The likelihood of damage to the Eustachian tube and middle and inner ear increases as the rate of change of external pressure increases, because large pressure differentials are produced in these areas.


Sensorineural Hearing Loss Eustachian Tube Round Window Blast Injury Aviat Space Environ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong HG, Heim IW (1937) The effect of flight on the middle ear. JAMA 109: 417–421CrossRefGoogle Scholar
  2. Arness MK (1997) Scuba decompression illness and diving fatalities in an overseas military community. Aviat Space Environ Med 68: 325–333PubMedGoogle Scholar
  3. Black WR, DeHart RL (1992) Decompression sickness: an increasing risk for the private pilot. Aviat Space Environ Med 63: 200–202PubMedGoogle Scholar
  4. Brandt Th, Dieterich M, Fries W (1988) Otolithic Tullio phenomenon typically presents as paroxysmal ocular tilt reaction. Adv Oto Rhino Laryngol 42: 153–156Google Scholar
  5. Broome JR, Dick EJ (1996) Neurological decompression illness in swine. Aviat Space Environ Med 67: 207–213PubMedGoogle Scholar
  6. Chait RH, Casler J, Zajtchuk JT (1989) Blast injury of the ear: historical review. Ann Otol Rhinol Laryngol 98 (Suppl 140): 9–12Google Scholar
  7. Conklin J, Kumar KV, Powell MR, Foster PP, Waligora JM (1996) A probabilistic model of hypobaric decompression sickness based on 66 chamber tests. Aviat Space Environ Med 67: 176–183Google Scholar
  8. Edmonds C, Freeman PB (1972) Inner ear barotrauma. Arch Otolaryngol 95: 556–563PubMedCrossRefGoogle Scholar
  9. Farmer IC, Thomas WG (1976) Ear and sinus problems in diving. In: Strauss (ed) Diving medicine. Grune and Stratton, New York, pp 109–133Google Scholar
  10. Goodhill V (1971) Sudden deafness and round window rupture. Laryngoscope 81: 1462–1474PubMedCrossRefGoogle Scholar
  11. Head PW (1984) Vertigo and barotrauma. In: Dix MR, Hood JD (eds) Vertigo. Wiley, Chichester, pp 199–215Google Scholar
  12. Ildiz F, Dunbar A (1994) A case of Tullio phenomenon in a subject with oval window fistula due to barotrauma. Aviat Space Environ Med 65: 67–69PubMedGoogle Scholar
  13. Jahrsdoerfer R (1979) The effects of impulse noise on the eardrum and middle ear. Otolaryngol Clin North Am 12: 515–520PubMedGoogle Scholar
  14. Kerr AG, Bryne JET (1975a) Concussive effects of bomb blast on the ear. J Laryngol Otol 89: 131–143PubMedCrossRefGoogle Scholar
  15. Kerr AG, Bryne JET (1975b) Blast injuries to the ear. BMJ 1: 559–561PubMedCrossRefGoogle Scholar
  16. Kumar KV, Waligora JM, Calkins DS (1990) Threshold altitude resulting in decompression sickness. Aviat Space Environ Med 61: 685–689PubMedGoogle Scholar
  17. Lundgren CEG, Malm LU (1966) Alternobaric vertigo among pilots. Aerospace Med 37: 178–180PubMedGoogle Scholar
  18. Luxon LM (1996) Post-traumatic vertigo. In: Baloh RW, Halmagyi M (eds) Disorders of the vestibular system. Oxford University Press, Oxford pp 381–395Google Scholar
  19. Margulies ADC (1987) A short course in diving medicine. Ann Emerg Med 16: 689–701PubMedCrossRefGoogle Scholar
  20. Nakashima T, Itoh M, Sato M, Watanabe Y, Yanagita N (1988) Auditory and vestibular disorders due to barotrauma. Ann Otol Rhinol Laryngol 97: 146–152PubMedGoogle Scholar
  21. Olson RM, Krutz RW (1991) Significance of delayed symptom onset and bubble growth in altitude decompression sickness. Aviat Space Environ Med 62: 296–299PubMedGoogle Scholar
  22. Pullen FW (1992) Perilymphatic fistula induced by barotrauma. Am J Otol 13: 270–272PubMedGoogle Scholar
  23. Rudge FW (1992) Altitude-induced arterial gas embolism: a case report. Aviat Space Environ Med 63: 203–205PubMedGoogle Scholar
  24. Shupak A, Doweck I, Nachtigal D, Spitzer O, Gordon CR (1993) Vestibular and audiometric consequences of blast injury to the ear. Arch Otolaryngol Head Neck Surg 119: 1362–1367PubMedCrossRefGoogle Scholar
  25. Sulaiman ZM, Pilmanis AA, O’Connor RB (1997) Relationship between age and susceptibility to altitude decompression sickness. Aviat Space Environ Med 68: 695–698PubMedGoogle Scholar
  26. Weien RW, Baumgartner N (1990) Altitude decompression sickness: hyperbaric therapy results in 528 cases. Aviat Space Environ Med 61: 833–836PubMedGoogle Scholar
  27. Wicks RE (1989) Alternobaric vertigo: an aeromedical review. Aviat Space Environ Med 60: 67–72PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2003

Authors and Affiliations

  • Thomas Brandt
    • 1
  1. 1.Neurologische Klinik, Klinikum GroßhadernLudwig-Maximillians-UniversitätMunichGermany

Personalised recommendations