Small Microstrip Patch Antennas

  • R. B. Waterhouse


As stated in Chapter 1, one of the many advantages of microstrip patch technology over its competitors is its low profile and hence small volume. Another key advantage of this printed antenna is the relative ease in which it can be connected to the feed network, as was highlighted in Chapter 2. For these reasons antenna design engineers deduced that microstrip patch antennas could be utilized for applications requiring where there was very limited space to mount the antenna. One such global application is for wireless communication handset terminals.


Radiation Pattern Ground Plane Return Loss Patch Antenna Microstrip Antenna 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. E. Padgett, C. G. Gunther and T. Hattori, “Overview of wireless personal communications,” IEEE Communications Magazine, pp. 28–41, Jan. 1995.Google Scholar
  2. [2]
    T. S. Rappaport, “Future trends of mobile and personal communications,” (Invited paper) SBMO/IEEE MTT-S IMOC’95 Proceedings, pp. 387–395.Google Scholar
  3. [3]
    R. Prasad, “Overview of wireless personal communications: Microwave Perspective,” IEEE Communication Magazine, pp. 104–108, April 1997.Google Scholar
  4. [4]
    J. L. Finol and J.G Mielke, “Past and future directions in cellar telephony,” (Invited paper) IEEE AP-S, pp. 7–13,1998.Google Scholar
  5. [5]
    T. Ojanpera and R. Prasad, “An overview of third-generation wireless personal communications: A European Perspective,” IEEE Personal Communications, pp. 59–65, Dec. 1998.Google Scholar
  6. [6]
    D. M. Pozar, “An overview of wireless systems and antennas,” IEEE Proc. AP-S, pp. 566–569, 2000.Google Scholar
  7. [7]
    K. Hirasawa and M. Haneishi, Analysis, design, and measurement of small and lowprofile antennas, Artech House, Inc., 1992.Google Scholar
  8. [8]
    K. Fujimoto and J. R. James, Mobile Antenna Systems Handbook, Norwood, MA: Artech House, 1994.Google Scholar
  9. [9]
    C. A. Balanis, Antenna Theory: Analysis and Design, 2nd edition, John Wiley & Sons Inc., 1997.Google Scholar
  10. [10]
    R. C. Johnson and H. Jasik, Antenna Engineering Handbook, 2nd Edition, McGrawHill, 1984.Google Scholar
  11. [11]
    Z. D. Liu, P. S. Hall and D. Wake, “Dual-frequency planar inverted-F antenna,” IEEE Trans. Antennas & Propagat., vol. 45, pp. 1451–1458, Oct. 1997.CrossRefGoogle Scholar
  12. [12]
    M. A. Jensen and Y. Rahmat-Samii, “Performance analysis of antennas for hand-held transceivers using FDTD,” IEEE Trans. Antennas & Propagat., vol. AP-42, (8), pp. 1106–1113, Aug. 1994.CrossRefGoogle Scholar
  13. [13]
    P. Salonen, M. Keskilammi and M. Kivikoski, “Single-feed dual-band planar inverted-F antenna using U-shaped slot,” IEEE Trans. Antennas & Propagat., vol. AP-48, (8), pp. 1262–1264, Aug. 2000.Google Scholar
  14. [14]
    C. R. Rowell and R. D. Murch, “A capacitively loaded PIFA for compact mobile telephone handset,” IEEE Trans. Antennas & Propagat., vol. 45, pp. 837–843, 1997.CrossRefGoogle Scholar
  15. [15]
    R. E. Munson, “Conformal microstrip antennas and microstrip phased arrays,” IEEE Trans. Antennas & Propagat., vol. AP-42, (1), pp. 74–78, Jan. 1974.CrossRefGoogle Scholar
  16. [16]
    J. W. Howell, “Microstrip antennas,” IEEE Trans. Antennas & Propagat., vol. AP-23, (1), pp. 90–93, Jan. 1975.MathSciNetCrossRefGoogle Scholar
  17. [17]
    K. R. Carver and J. W. Mink, “Microstrip antenna technology,” IEEE Trans. Antennas & Propagat., vol. AP-29, (1), pp. 2–24, Jan. 1981.CrossRefGoogle Scholar
  18. [18]
    T. K. Lo, Y. Hwang, E. K. W. Lam and B. Lee, “Miniature aperture-coupled microstrip antenna of very high permittivity,” Electron. Lett., vol 33, pp. 9–10, Jan. 1997.CrossRefGoogle Scholar
  19. [19]
    G. A. Kyriacou and J. N. Sahalos, “Analysis of a probe-fed short-circuited microstrip antenna,” IEEE Trans. Vehicular Tech., vol. 45, (3), pp. 427–430, Aug. 1996.CrossRefGoogle Scholar
  20. [20]
    A. Boag, Y. Shimony and R. Mittra, “Dual band cavity-backed quarter-wave patch antenna,” IEEE AP-S Digest, vol. 4, pp. 2124–2127, 1995.Google Scholar
  21. [21]
    R. B. Waterhouse, “Small microstrip patch antenna,” Electron. Lett., vol. 31, pp. 604–605, April 1995.CrossRefGoogle Scholar
  22. [22]
    K.-L. Wong and Y. F. Lin, “Small broadband rectangular microstrip antenna with chip-resistor loading,” Electron. Lett., pp. 1593–1594, Sept. 1997.Google Scholar
  23. [23]
    J. -H. Lu, “Single-feed dual-frequency rectangular microstrip antennas with pair of step-slots,” Electron. Lett., vol. 35, (5), pp. 354–355, Mar. 1999.CrossRefGoogle Scholar
  24. [24]
    D. M. Pozar, Microwave Engineering — Second Edition, John Wiley and Sons Inc., New York, 1998.Google Scholar
  25. [25]
    J.T. Aberle, D.M. Pozar and C.R. Birtcher, “Evaluation of input impedance and radar cross section of probe fed microstrip patch elements using an accurate feed model”, IEEE Trans. Antennas Propagat., AP-39, pp. 1691–1697, December 1991.CrossRefGoogle Scholar
  26. [26]
    M. Sanad, “Effect of the shorting posts on short circuit microstrip antennas”, Proc. IEEE AP-Symp., pp. 794–797, June 1994.Google Scholar
  27. [27]
    I. Park and R. Mittra, “Aperture-coupled small microstrip antenna”, Electron. Lett., Vol. 32, pp. 1741–1742, Sept. 1996.CrossRefGoogle Scholar
  28. [28]
    R. B. Waterhouse and S. D. Targonski, “Performance of microstrip patches incorporating a single shorting post”, Proc. IEEE AP-Symp., pp. 29–32, July 1996.Google Scholar
  29. [29]
    J. Huang, Personal Communication. Google Scholar
  30. [30]
    D. H. Schaubert, “A review of some microstrip antenna characteristics”, Microstrip Antenna Design, IEEE Press, pp.59–67, 1995.Google Scholar
  31. [31]
    Ensemble 5.1, Ansoft, 1998.Google Scholar
  32. [32]
    R. B. Waterhouse, S. D. Targonski and D. M. Kokotoff, “Design and performance of small printed Antennas”, IEEE Trans. Antennas & Prop., vol. AP-46, pp. 1629–1633, Nov.1998.Google Scholar
  33. [33]
    J. T Rowley and R. B. Waterhouse, “Performance of shorted microstrip patch antennas for mobile communications handset at 1800 MHz,” IEEE Trans. Antennas & Prop. Vol. AP-47, pp. 815–822, May. 1999.CrossRefGoogle Scholar
  34. [34]
    M. A. Jensen and Y. Rahmat-Samii, “EM interaction of handset antennas and a human in personal communications”, Proc. IEEE, vol. 83, pp. 7–17, Jan. 1995.CrossRefGoogle Scholar
  35. [35]
    D’Inzeo, “Proposal for numerical canonical models in mobile communications” in Biomedical Effects of Electromagnetic Fields– Reference Models in Mobile Communications, D. Simunic, Ed. Rome, Italy: COST244, pp. 1–7, 1994.Google Scholar
  36. [36]
    R. B. Waterhouse, “Small printed antenna easily integrated into a mobile handset terminal,” Electron. Lett., Vol. 34, pp. 1629–1631, Aug. 1998.CrossRefGoogle Scholar
  37. [37]
    F. Ali and J. B. Horton, “Introduction to special issue on emerging commercial and consumer circuits, systems, and their applications,” IEEE Trans. Microwave Theory Tech., Vol. 43, pp. 1633–1638, July 1995.Google Scholar
  38. [38]
    R. B. Waterhouse, “Small printed antenna easily integrated into a mobile handset terminal,” Electronics Letters, vol. 34, pp. 1629–1631, Aug. 1998.CrossRefGoogle Scholar
  39. [39]
    R. B. Waterhouse, J. T. Rowley and K. H. Joyner, “A stacked shorted patch,” Electronics Letters, vol. 34, pp. 612– 614, April 1998.CrossRefGoogle Scholar
  40. [40]
    J. Rashed, and C.-T. Tai, “A new cIass of resonant antennas”, IEEE Trans. Antennas & Propagat, vol. 39, pp. 1428–1430, Sept. 1991.CrossRefGoogle Scholar
  41. [41]
    P. S. Hall, Private Communication. Google Scholar
  42. [42]
    XFDTD (1997), User’s manual for XFDTD the X-Window Finite Difference Time Domain Graphical User Interface for Electromagnetic Calculations, Version 4.03, Remcom Inc., June 1997.Google Scholar
  43. [43]
    R. B. Waterhouse, “Printed antenna suitable for mobile communication handsets”, Electron. Lett., Vol. 33, pp. 1831–1832, Oct. 1997.CrossRefGoogle Scholar
  44. [44]
    Zealand Software Inc., IE3DTM Version 6.01.Google Scholar
  45. [45]
    D. M. Kokotoff, J. T. Aberle and R.B. Waterhouse, “Rigorous analysis of probe-fed printed annular rings,” IEEE Trans. Antennas & Prop., vol. AP-47, Feb. 1999.Google Scholar
  46. [46]
    J. Huang, “A technique for an array to generate circular polarization with linearly polarized elements,” IEEE Trans. Antennas & Propagat., vol. 34, pp. 1113–1124, Sept. 1986.CrossRefGoogle Scholar
  47. [47]
    C.–Y. Huang, J.–Y. Wu and K.–L. Wong, “Broadband circularly polarized square microstrip antenna using chip-resistor loading,” IEE Proc. Micro. Antennas & Propagat., vol. 146, pp. 94–96, Feb. 1999.CrossRefGoogle Scholar
  48. [48]
    M. A. Jensen and Y. Rahmat-Samii, “Performance of circularly polarized patch antennas for personal satellite communications including biological effects,” Proc. AP-S, Newport Beach, Californa, USA, pp. 1112–1115, June 1995.Google Scholar
  49. [49]
    P. S. Hall, J. S. Dahele and J. R. James, “Design principles of sequentially fed, wide bandwidth, circularly polarized microstrip antennas,” IEE Proc. H, vol. 136, pp. 381–389, Oct. 1989.Google Scholar
  50. [50]
    D. F. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexópolous, E. Yablonovitch, “High-Impedance Electromagnetic Surfaces with a Forbidden Frequency Band,” IEEE Trans. Microwave Theory and Tech., vol. 47, pp. 2059–2074, Nov. 1999.CrossRefGoogle Scholar
  51. [51]
    R. Coccoli, F. Yang, K. Ma, T. Itoh, “Aperture-Coupled Patch Antenna on UC-PBG Substrate,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2123–2130, Nov. 1999.CrossRefGoogle Scholar
  52. [52]
    C. Gabriel, “Compilation of the dielectric properties of body tissues at RF and microwave frequencies”, Brooks Air Force Base, report no. AI/OE-TR-1996–0037, 1996.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • R. B. Waterhouse
    • 1
  1. 1.RMIT UniversityAustralia

Personalised recommendations