Enhancing the Bandwidth of Microstrip Patch Antennas

  • R. B. Waterhouse


Probably one of the most researched areas in the history of microstrip patch technology has been how to improve the impedance bandwidth of this antenna such that it can be utilized in many more applications. From when the first patch was developed at the narrow impedance bandwidth observed, researchers throughout the world have proposed and investigated procedures that will overcome the inherent limitation of the microstrip patch: all with varying degrees of success and all with other compromises that had to be made to achieve their goal.


Radiation Pattern Return Loss Patch Antenna Microstrip Antenna Impedance Locus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Chio and D. H. Schaubert, “Effects of slotline cavity on dual-polarized tapered slot antenna arrays”, 1999 Antennas & Propagation International Symposium, Orlando USA, pp. 130–133, July 1999.Google Scholar
  2. [2]
    Y. Qian, W. R. Deal, N. Kaneda, and T. Itoh, “A uniplanar quasi-yagi antenna with wide bandwidth and low mutual coupling characteristics,” 1999 IEEE AP-S International Symposium, Orlando, FL, USA, pp. 924–927, July 1999.Google Scholar
  3. [3]
    J. M. Johnson and Y. Rahmat-Samii, “Genetic Algorithms and Method of Moments (GA/MOM) for the design of integrated antennas,” IEEE Trans. Antennas Propagat., Vol. AP-47, pp. 1606–1614, October 1999.Google Scholar
  4. [4]
    H. F. Pues and A. R. Van de Capelle, “An Impedance Matching Technique for Increasing the Bandwidth of Microstrip Antennas,” IEEE Trans. Antennas Propagat., Vol. AP-37, pp. 1345–1354, November 1989.Google Scholar
  5. [5]
    J.-S. Kuo and K.–L. Wong, “A dual-frequency L-shaped patch antenna,” Microwave & Optical Technology Letters, vol. 27, pp. 177–179, Nov. 2000.CrossRefGoogle Scholar
  6. [6]
    G. Kumar and K. C. Gupta, “Non radiating edges and four edges gap-coupled multiple resonator broad-band microstrip antennas”, IEEE Trans. Antennas Propagat., Vol. AP-33, pp. 173–178, February 1985.CrossRefGoogle Scholar
  7. [7]
    R. B. Waterhouse, “Small microstrip patch antenna,” Electronics Letters, vol. 31, pp. 604–605, April 1995.CrossRefGoogle Scholar
  8. [8]
    W. C. Chew, “A broadband Annular Ring Microstrip Antenna,” IEEE Trans. Antennas Propagat., vol. AP-30, pp. 918–922, May 1982.CrossRefGoogle Scholar
  9. [9]
    D. M. Kokotoff, J. T. Aberle and R. B. Waterhouse, “Rigorous analysis of probe-fed printed annular rings,” IEEE Transactions Antennas & Propagation, vol. 47, pp. 384–388, Feb. 1999.CrossRefGoogle Scholar
  10. [10]
    S. A. Long and D. M. Walton, “A dual-frequency stacked circular-disc antenna,” IEEE Trans. Antennas Propagat., Vol. AP-27, pp. 270–273, March 1979.CrossRefGoogle Scholar
  11. [11]
    J. T. Aberle, D. M. Pozar and J. Manges, “Phased arrays of probe-fed stacked microstrip patches”, IEEE Trans. Ant. & Prop., vol. AP-42, pp. 920–927, July 1994.CrossRefGoogle Scholar
  12. [12]
    J. T. Aberle and D. M. Pozar, “Analysis of infinite arrays of probe fed rectangular microstrip patches using a rigorous feed modeI”, Proc. Inst. Elec. Eng., Pt. H, vol. 136, pp. 110–119, April 1989.Google Scholar
  13. [13]
    J. S. Dahelle and K. F. Lee, “Characteristics of annular ring microstrip antenna”, Electron. Lett., Vol. 18, pp. 1051–1052, November 1982.CrossRefGoogle Scholar
  14. [14]
    Z. Nie, W.C. Chew and Y.T. Lo, “Analysis of the annular-ring-loaded circular disk microstrip antenna,” IEEE Trans. Antennas Propagat., vol. AP-38, no. 6, pp. 806–813, June 1990.Google Scholar
  15. [15]
    S. D. Targonski, R. B. Waterhouse, and D. M. Pozar, “A wideband aperture coupled stacked patch antenna using thick substrates,” Electronics Letters, vol. 32, pp. 1941–1942, October 1996.CrossRefGoogle Scholar
  16. [16]
    C. A. Balanis, Antenna Theory: Analysis and Design, Wiley, New York, 1997.Google Scholar
  17. [17]
    J. T. Aberle and D. M. Pozar, “Accurate and versatile solutions for probe-fed microstrip patch antennas and arrays”, Electromagn., vol. 11, pp. 1–19, Jan. 1991.CrossRefGoogle Scholar
  18. [18]
    D. M. Pozar, “Microstrip antennas”, Proc. IEEE, vol. 80, pp. 79–91, Jan. 1992CrossRefGoogle Scholar
  19. [19]
    J. R. James and P. S. Hall, Handbook of Microstrip Antennas, London, UK: Peter Perergrinus, 1989.CrossRefGoogle Scholar
  20. [20]
    D. M. Kokotoff, R. B. Waterhouse, C. R. Birtcher and J. T. Aberle, “Annular ring coupled circular patch with enhanced performance,” Electronics Letters, vol. 33, pp. 2000–2001, Nov. 1997.CrossRefGoogle Scholar
  21. [21]
    R. B. Waterhouse, “The use of shorting posts to improve the scanning range of probefed microstrip patch phased arrays,” IEEE Transactions Antennas & Propagation, vol. 44, pp. 302–309, March 1996.CrossRefGoogle Scholar
  22. [22]
    F. Croq and D. M. Pozar, “Millimeter wave design of wide-band aperture-coupled stacked microstrip antennas”, IEEE Transactions Antennas & Propagation, vol. AP-39, pp. 1770–1776, December 1991.Google Scholar
  23. [23]
    R. B. Waterhouse and N.V. Shuley, “Scan performance of infinite arrays of microstrip patch elements loaded with varactor diodes,” IEEE Trans. Antennas Propagat., vol. AP-41, pp.1273–1280, Sept. 1993.CrossRefGoogle Scholar
  24. [24]
    J. T. Aberle and F. Zavosh, “Analysis of Probe-fed Cicrular Micostrip Patches Backed by Circular Cavities,” Electromagnetics, Vol. 14, pp. 239–258, 1994.CrossRefGoogle Scholar
  25. [25]
    M. Lye, R. B. Waterhouse, D. Novak, F. Zavosh and J. T. Aberle, “Design and development of a printed antenna remote unit for optically distributed mobile communications,” IEEE Microwave and Guided Wave Letters, vol. 8, pp. 432–434, December 1998.CrossRefGoogle Scholar
  26. [26]
    J.F. Zurcher, “The SSFIP: A global concept for high performance broadband planar antennas”, Electronics Letters, vol. 24, pp. 1433–1435, Nov. 1988.CrossRefGoogle Scholar
  27. [27]
    N.K. Das and D.M. Pozar, “A generalized spectral domain Green’s function for multilayer dielectric substrates with applications to multilayer transmission lines,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-35, pp. 326–335, Mar. 1987.CrossRefGoogle Scholar
  28. [28]
    S. D. Targonski and R. B. Waterhouse, “Reflector elements for aperture and aperture coupled microstrip antennas,” IEEE Antennas & Propagation Symposium, Montreal Canada, pp. 1840–1843, July 1997.Google Scholar
  29. [29]
    R. B. Waterhouse, M. Lye and S. D. Targonski, “Design of printed antennas for mobile base station applications,” Third Asia-Pacific Conference on Communications, APCC ‘97, Sydney Australia, pp. 242–246, Dec. 1997.Google Scholar
  30. [30]
    S.D. Targonski and D.M. Pozar, “Design of wideband circularly polarized aperture coupled microstrip antennas”, IEEE Transactions on Antennas and Propagation, Vol. 41, pp. 214–220, February 1993.CrossRefGoogle Scholar
  31. [31]
    F. Croq and A. Papiernik, “Wideband aperture coupled microstrip antenna”, Electronics Letters, vol. 26, pp. 1293–1294, August 1990.CrossRefGoogle Scholar
  32. [32]
    J.R. Sanford and A. Tengs, “A Two Substrate Dual Polarized Aperture Coupled Patch”, IEEE Antennas and Propagation Symposium Digest, pp. 1544–1547, 1996.Google Scholar
  33. [33]
    D.M. Pozar, “A reciprocity method of analysis for printed slots and slot coupled microstrip antennas”, IEEE Transactions on Antennas Propagat., Vol. AP-34, pp. 1439–1446, December 1986.CrossRefGoogle Scholar
  34. [34]
    D. A. Gray, “Optimal cell deployment for LMDS systems at 28 GHz,” Proc. Wireless Broadband Conf, Washington DC, July 1996.Google Scholar
  35. [35]
    H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio communication,” IEEE Trans. Microwave Theory & Techniques, vol. 40, pp. 2285–2292, Dec. 1992.CrossRefGoogle Scholar
  36. [36]
    Z. Ahmed, D. Novak, R. B. Waterhouse, and H. F. Liu, “37 GHz fiber-wireless system for distribution of broadband signals,” IEEE Trans. Microwave Theory & Techniques, vol. 45, pp. 1431–1435, Aug. 1997.CrossRefGoogle Scholar
  37. [37]
    L. D. Westbrook and D. G. Moodie, “Simultaneous bi-directional analog fiber-optic transmission using an electroabsorption modulator,” Electronics Letters, vol. 32, pp. 1806–1807, Sept. 1996.CrossRefGoogle Scholar
  38. [38]
    K. Li, J. X. Ge, T. Matsui, and M. Izutsu, “Millimeter-wave sub-carrier optical modulation, photodetection and integration with antenna for optic fiber link system,” Proc. 1999 IEEE MTT-S Int. Microwave Symp., Anaheim, CA, USA, pp. 1015–1018, June 1999.Google Scholar
  39. [39]
    A. Stohr, K. Kitayama, and D. Jager, “Full-duplex fiber-optic RF subcarrier transmission using a dual-function modulator/photodetector,” IEEE Trans. Microwave Theory & Techniques, vol. 47, pp. 1338–1341, July 1999.CrossRefGoogle Scholar
  40. [40]
    D. Novak, G. Smith, A. Nirmalathas, C. Lim and R. B. Waterhouse, (invited) “Fiberoptic networks for millimeter-wave wireless communications,” Proc. 1998 Asia Pacific Microwave Conference, Yokohama, Japan, pp. 309–316, Dec. 1998.Google Scholar
  41. [41]
    D. M. Pozar, S. D. Targonski and H. D. Syrigos, “Design of millimeter-wave microstrip reflectarrays,” IEEE Trans. Antennas Propagat., vol. 45, pp. 287–296, February 1997.CrossRefGoogle Scholar
  42. [42]
    W. Menzel, D. Pilz and R. Leberer, “A 77 GHz FM/CW radar front-end with a lowprofile low-loss printed antenna,” IEEE Trans. Microwave Theory Techn., vol. 47, pp. 2337–2241, December 1999.CrossRefGoogle Scholar
  43. [43]
    P. R. Haddad and D. M. Pozar, “Analysis of two aperture-coupled cavity-backed antennas,” IEEE Trans. Antennas & Propagat., vol. 45, pp. 1717–1726, Dec. 1997.CrossRefGoogle Scholar
  44. [44]
    J.R. Sanford and A. Tengs, “A Two Substrate Dual Polarized Aperture Coupled Patch”, IEEE Trans. Ant. & Prop. Symp. Digest, pp. 1544–1547, 1996.Google Scholar
  45. [45]
    S.O Gao, L.W. Li, P. Gardner, and P.S. Hall, “Wideband Dual-Polarized Microstrip Patch Antenna”, Electronics Letters, Vol. 37, pp. 1213–14, Sept. 2001.CrossRefGoogle Scholar
  46. [46]
    G. L. Matthaei, L. Young and E. M. T. Jones, Microwave Filters, ImpedanceMatching Networks and Coupling Structures, Artech House, Dedham, 1980.Google Scholar
  47. [47]
    D. M. Pozar, Microwave Engineering–Second Edition, John Wiley and Sons Inc., New York, 1998.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • R. B. Waterhouse
    • 1
  1. 1.RMIT UniversityAustralia

Personalised recommendations