Abstract

Often described as one of the most exciting developments in antenna and electromagnetic history, the microstrip patch antenna has matured into probably the most versatile solutions to many systems requiring a radiating element. Microstrip patch antennas fall into the category of printed antennas: radiating elements that utilize printed circuit manufacturing processes to develop the feed and radiating structure. Of all the printed antennas, including dipoles, slots and tapered slots, microstrip patches are by far the most popular and adaptable. This is because of all their salient features: including ease of integration, good radiation control and low cost of production.

Keywords

Surface Wave Patch Antenna Microstrip Antenna Transmission Line Model Impedance Bandwidth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    R. E. Munson, “Conformal Microstrip Antennas and Microstrip Phased Arrays,” IEEE Trans. Antennas Propagat., vol. AP-22, pp. 74–78, January 1974.CrossRefGoogle Scholar
  2. [2]
    R. J. Mailloux, J. F. Mcllvenna and N. P. Kernweis;“Microstrip array technology,” IEEE Trans. Antennas & Propagation, vol. 29, pp. 25–37, Jan. 1981.CrossRefGoogle Scholar
  3. [3]
    S. A. Long and D. M. Walton, “A dual-frequency stacked circular-disc antenna,” IEEE Trans. Antennas Propagat., Vol. AP-27, pp. 270–273, March 1979.Google Scholar
  4. [4]
    D. M. Pozar, “A Microstrip Antenna Aperture Coupled to a Microstrip Line,” Electronics Letters, Vol. 21, pp. 49–50, January 1985.CrossRefGoogle Scholar
  5. [5]
    D. M. Pozar and B. Kaufman, “Increasing the Bandwidth of a Microstrip Antenna by Proximity Coupling,” Electronics Letters, Vol. 23, pp. 368–369, April 1987.CrossRefGoogle Scholar
  6. [6]
    J. R. Mosig and F. E. Gardiol, “General Integral Equation Formulation for Microstrip Antennas and Scatterers,” Proc. Inst. Elect. Eng., pt. H, Vol. 132, pp. 424–432, 1985.Google Scholar
  7. [7]
    D. M. Pozar, “Input Impedance and Mutual Coupling of Rectangular Microstrip Antennas,” IEEE Trans. Antennas Propagat., Vol. AP-30, pp. 1191–1196, November 1982.CrossRefGoogle Scholar
  8. [8]
    D. M. Pozar and D. H. Schaubert, “Scan blindness in infinite arrays of printed dipoles,” IEEE Trans. Antennas & Propagation, vol. 32, pp. 602–610, June 1984.CrossRefGoogle Scholar
  9. [9]
    J. T. Aberle and D. M. Pozar, “Analysis of infinite arrays of probe fed rectangular microstrip patches using a rigorous feed model”, Proc. Inst. Elec. Eng., Pt. H, vol. 136, pp. 110–119, April 1989.Google Scholar
  10. [10]
    D. L. Rascoe, et ai, “Ka-band MMIC beam-steered transmitter array”, IEEE Trans. Microwave Theory & Techniques, vol. 37, pp. 2165–2168, Dec. 1989.CrossRefGoogle Scholar
  11. [11]
    E. Levine, G. Malamud, S. Shtrikman and D. Treves, “A study of microstrip array antennas with the feed network,” IEEE Trans. Antennas & Propagation, vol. 37, pp. 426–434, April 1989.CrossRefGoogle Scholar
  12. [12]
    J. Huang, “A Technique for an Array to Generate Circular Polarization with Linearly Polarized Elements”, IEEE Trans. Antennas Propagat., AP-34, pp. 1113–1124, September 1986.CrossRefGoogle Scholar
  13. [13]
    P. S. Hall, J. S. Dahele and J. R. James, “Design Principles of Sequentially Fed Wide Bandwidth, Circularly Polarized Microstrip Antennas,” IEE Proc. H, vol. 136, pp. 381–389, October 1989.Google Scholar
  14. [14]
    S. Sabban, “A New Broadband Stacked Two-Layer Microstrip Antenna,” 1983 IEEE Antennas Propagat. Symposium, pp. 63–66, June 1983.Google Scholar
  15. [15]
    Kumar and K. C. Gupta, “Non radiating edges and four edges gap-coupled multiple resonator broad-band microstrip antennas”, IEEE Trans. Antennas Propagat., Vol. AP-33, pp. 173–178, February 1985.CrossRefGoogle Scholar
  16. [16]
    J.F. Zurcher, “The SSFIP: A global concept for high performance broadband planar antennas”, Electronics Letters, vol. 24, pp. 1433–1435, Nov. 1988.CrossRefGoogle Scholar
  17. [17]
    XFDTD, Remcom: www.fdtd.com</u>Google Scholar
  18. [18]
    J.-M. Jin and J. L. Volakis, “A Hybrid Finite Element Method for Scattering and Radiation by Microstrip Patch Antennas and Arrays Residing in a Cavity,” IEEE Trans. Antennas Propagat., vol. AP-39, pp. 1598–1604, November 1991.CrossRefGoogle Scholar
  19. [19]
    S. D. Targonski, R. B. Waterhouse and D. M. Pozar, “Design of wideband aperturestacked patch microstrip antennas”, IEEE Transactions Antennas & Propagation, vol. 46, pp. 1246–1251, Sept. 1998.Google Scholar
  20. [20]
    D. R. Jackson, J. T. Williams, A. K. Bhattacharyya, R. L. Smith, S. J. Buchheitt and S. A. Long, “Microstrip Patch Designs That Do Not Excite Surface Waves,” IEEE Trans. Antennas Propagat., vol. AP-41, pp. 1026–1037, August 1993.CrossRefGoogle Scholar
  21. [21]
    Y. Qian and T. Itoh, “Progress in Active Integrated Antennas and Their Applications”, IEEE Trans. Microwave Theory and Techniques, 1998, vol. 46, no. 11, pp. 1891–1900.CrossRefGoogle Scholar
  22. [22]
    E. Lee, P. S. Hall, P. Gardner and D. Kitchener, “Multi-band Antennas,” 1999 IEEE Antennas Propagat. Symposium, Orlando Florida, July 1999.Google Scholar
  23. [23]
    D. M. Pozar, S. D. Targonski and H. D. Syrigos, “Design of millimeter-wave microstrip reflectarrays,” IEEE Trans. Antennas & Propagation, vol. 45, pp. 287–296, Feb. 1997.CrossRefGoogle Scholar
  24. [24]
    R. B. Waterhouse, “Small microstrip patch antenna,” Electronics Letters, vol. 31, pp. 604–605, Apr. 1995.CrossRefGoogle Scholar
  25. [25]
    I. Park and R. Mittra, “Aperture-coupled small microstrip antenna”, Electron. Lett., Vol. 32, pp. 1741–1742, Sept. 1996.CrossRefGoogle Scholar
  26. [26]
    M. P. DeLisio and R. A. York, “Quasi-optical and Spatial Power Combining,” IEEE Trans. Microwave Theory Techn., Vol. MTT-50, pp. 929–936, March 2002.Google Scholar
  27. [27]
    R. F. Jimenez Broas, D. F. Sievenpiper, E. Yablonovitch, “A High-Impedance Ground Plane Applied to a Cellphone Handset Geometry,” IEEE Trans. Microwave Theory and Tech., vol. 49, pp. 1262–1265, Jul. 2001.CrossRefGoogle Scholar
  28. [28]
    H. Choo and H. Ling, “Design of Multiband Microstrip Antennas Using a Genetic Algorithm,” IEEE Microwave and Wireless Components Letters, Vol. 12, pp. 345–347, September 2002.CrossRefGoogle Scholar
  29. [29]
    A. Mitchell, M. Lech and R. B. Waterhouse, “Optimization of broadband microstrip patch antennas,” 2000 Asia Pacific Microwave Conference, APMC’ Oo, Sydney Australia, pp. 711– 714, Dec. 2000.Google Scholar
  30. [30]
    C. R. Rowell and R. D. Murch, “A capacitively Loaded PIFA for Compact Mobile Telephone Handset,” IEEE Trans. Antennas Propagat., vol. AP-45, pp. 837–843, August 1997.CrossRefGoogle Scholar
  31. [31]
    R. B. Waterhouse, D. Novak, A. Nirmalathas and C. Lim, “Broadband printed sectoral coverage antennas for millimetre-wave wireless applications,” IEEE Transactions on Antennas & Propagation, vol. 50, pp. 12–16, Jan. 2002.CrossRefGoogle Scholar
  32. [32]
    K. R. Carver, “Antenna Technology Requirements for Next-Generation Spaceborne SAR Systems,” 1983 IEEE Antennas Propagat. Symposium, pp. 365–368, July 1983.Google Scholar
  33. [33]
    J. J. Schuss, J. Upton, B. Myers, T. Sikina, A. Rohwer, P. Makridakas, R. Francois, L. Wardle and R. Smith, “The IRIDIUM main mission antenna concept”, IEEE Trans. Antennas & Propagation, vol. AP-47, pp. 416–425, Mar. 1999.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • R. B. Waterhouse
    • 1
  1. 1.RMIT UniversityAustralia

Personalised recommendations