Skip to main content

Spherically Invariant Random Processes: Theory and Applications

  • Chapter

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 712))

Abstract

The theory and application of the class of spherically invariant random processes (SIRPs) are reviewed. An SIRP is a random process whose finite-dimensional distributions are scalar functions of quadratic forms in the corresponding sampled variables. Stochastic and system-theoretic properties are discussed, including a basic representation theorem which gives rise to a number of interesting properties concerning the detection, estimation, and interpretation of SIRPs. Applications are reviewed as well, including the use of SIRPs to model speech waveforms, radar clutter returns, and various radio propagation channel disturbances. The use of SIRP modeling in channel equalization and array processing is also described. Finally, some issues concerning the generation and simulation of SIRPs are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Theory

  1. I. J. Schoenberg, “Metric Spaces and Completely Monotone Functions,” Ann. Math., vol. 39, 1938, pp. 811–841.

    Article  MathSciNet  Google Scholar 

  2. A. N. Kolmogorov, “Foundations of the Theory of Probability,” Chelsea, New York, 1956, pp. 27–33.

    MATH  Google Scholar 

  3. A. M. Vershik, “Some Characteristic Properties of Gaussian Stochastic Processes,” Theory of Probability and Applications (USSR), vol. 9, 1964, pp. 353–356.

    Article  Google Scholar 

  4. I. F. Blake and J. B. Thomas, “On a Class of Processes Arising in Linear Estimation Theory,” IEEE Trans. on Infor. Th., vol. 14, Jan. 1968, pp. 12–16.

    Article  MATH  Google Scholar 

  5. I. F. Blake and J. B. Thomas, “The Linear Random Process,” Proc. of the IEEE, vol. 56, Oct. 1968, pp. 1696–1703.

    Article  Google Scholar 

  6. D. K. McGraw and J. F. Wagner, “Elliptically Symmetric Distributions,” IEEE Trans. on Inform. Th., vol. 14, Jan. 1968, pp. 110–120.

    Article  Google Scholar 

  7. B. Picinbono, “Spherically Invariant and Compound Gaussian Stochastic Processes,” IEEE Trans. on Infor. Th., vol. 16, Jan. 1970, pp. 77–79.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. F. C. Kingman, “On Random Sequences with Spherical Symmetry,” Biometrika, vol. 59, 1972, pp. 492–494.

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Yao, “A Representation Theorem and its Applications to Spherically-Invariant Random Processes,” IEEE Trans. on Infor. Th., vol. 19, Sept. 1973, pp. 600–608.

    Article  MATH  Google Scholar 

  10. A. F. Gualtierotti, “Some Remarks on Spherically Invariant Distribution,” Jl Mult. Analy, vol. 4, 1974, pp. 347–149.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Goldman, “Detection in the Presence of Spherical Symmetric Random Vectors,” IEEE Trans. on Infor. Th., vol. 22, Jan. 1976, pp. 52–59.

    Article  MATH  Google Scholar 

  12. R. M. Gray and L. D. Davisson, “Ergodic and Information Theory,” DH&R, 1977.

    Google Scholar 

  13. G. L. Wise and N. C. Gallagher, “On Spherically Invariant Random Processes,” IEEE Trans. on Infor. Th., vol. 24, Jan. 1978, pp. 118–120.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Brehm, “Description of Spherically Invariant Random Processes by Means of G-Functions,” in Combinatorial Theory, Lecture Notes in Mathematics, vol. 969 ed. A. Dold and B. Eckmann, Springer-Verlag, Berlin, 1982.

    Google Scholar 

  15. K. T. Fang, S. Kotz, and K. W. Ng, Symmetric Multivariate and Related Distributions, Chapman and Hall, London, 1990.

    MATH  Google Scholar 

Detection

  1. G. Vezzosi and B. Picinbono, “Detection d’un Signal Certain dan un Bruit Spheriquement Invariant, Structure et Caracteriques des Receptions,” Ann. Telecommun., vol. 27, 1972, pp. 95–110.

    Google Scholar 

  2. S. T. Huang and S. Cambanis, “Spherically Invariant Processes: Their Nonlinear Structure, Discrimination, and Estimation,” J. of Multiv. Ana., vol. 9, 1970, pp. 59–83.

    Article  MathSciNet  Google Scholar 

  3. C. R. Baker and A. F. Gualtierotti, “Likelihood Ratios and Signal Detection for Non-Gaussian Processes,” in Stochastic Processes in Underwater Acoustics, edit. C.R. Baker, Springer-Verlag, New York, 1986, pp. 154–180.

    Chapter  Google Scholar 

  4. S. A. Kassam, Signal Detection in Non-Gaussian Noise, Springer-Verlag, New York, 1988.

    Book  Google Scholar 

  5. H. V. Poor, An Introduction to Signal Detection and Estimation, Springer-Verlag, 1988.

    MATH  Google Scholar 

  6. L. Izzo and M. Tanda, “Array Detection of Random Signals in Spherically Invariant Noise,” J. Acoust. Soc. Am., vol. 95, Nov. 1993, pp. 2668–2690.

    Google Scholar 

  7. L. Izzo and M. Tanda, “Constant False-Alarm Rate Array Detection of Random Signals in Spherically Invariant Noise,” J. Acoust. Soc. Am., vol. 98, Aug. 1995, pp. 931–937.

    Article  Google Scholar 

  8. E. Conte, M. Di Bisceglie, M. Longo, and M. Lops, “Canonical Detection in Spherically Invariant Noise,” IEEE Trans. Commun., vol. 43, Feb. 1995, pp. 347–353.

    Article  MATH  Google Scholar 

  9. L. Izzo and M. Tanda, “Array Detection of Random Signals Embedded in an Additive Mixture of Spherically Invariant and Gaussian Noise,” IEEE Trans. on Commun., vol. 49, Oct. 2001, pp. 1723–1726.

    Article  MATH  Google Scholar 

SIRP and Heavy-Tailed Processes

  1. C. L. Nikias and M. Shao, Signal Processing with Alpha-Stable Distributins and Applications, J. Wiley, New York, 1995.

    Google Scholar 

  2. B. B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman, New York, 1983.

    Google Scholar 

  3. B. B. Mandelbrot, Fractals and Scaling in Finance, Springer-Verlag, New York, 1997.

    Book  MATH  Google Scholar 

  4. R. Adler, R. Feldman, M. S. Taqqu, A Practical Guide to Heavy Tails: Statistical Techniques and Applications, Birkhauser, Boston, 1998.

    MATH  Google Scholar 

SIRP Modeling of Bandlimited Speech Waveform

  1. W. D. Hopkins, “Structural Properties of Rate-Distortion Functions,” Ph.D. thesis, UCLA, June 1972.

    Google Scholar 

  2. W. D. Hopkins and K. Yao, “Rate-Distortion Functions of Sources Related by Transformations,” Proc. 1972 Int. Symp.on Inform. Theory, 1972, p. 76.

    Google Scholar 

  3. D. Wolf and H. Brehm, “Experimental Studies on One- and Two-Dimensional Aomplitude Probability Densities of Speech Signals,” Proc. 1973 Inter. Symp. on Inform. Theory, 1973, p. B4–6.

    Google Scholar 

  4. H. M. Leung and S. Cambanis, “On the Rate Distortion Functions of Spherically Invariant Vectors and Sequences,” IEEE Trans. on Inform. Th., vol.3, May 1978, pp.367–373. 14 references.

    Article  MathSciNet  Google Scholar 

  5. H. Brehm and K. Trottler, “Vector Quantization of Spherically Invariant Random Processes,” Proc. EURASIP, Signal Processing II, 1983, pp. 383–386.

    Google Scholar 

  6. H. Brehm and W. Stammler, “Description and Generation of Spherically Invariant Speech-Model Signals,” Signal Processing, vol. 12, 1987, pp. 119–141.

    Article  Google Scholar 

  7. P. Vogel, “On a Statistical Model for Moving Pictures,” Proc. Eusipco-90, Sept. 1990, pp. 983–986.

    Google Scholar 

  8. F. Muller and B. Hurtgen, “A New Spherically Invariant Joint Distribution Model for Image Signals,” Proc. EUSIPCO-94, Sept. 1994, pp.1082–1085.

    Google Scholar 

  9. F. Muller and F. Geischlager, “Vector Quantization of Spherically Invariant Random Processes,” Proc. 1995 Inter. Symp. on Inform. Theory, 1995, p. 439.

    Google Scholar 

SIRP Modeling of Radar Clutters

  1. E. Conte and M. Longo, “Characterization of Radar Clutter as a Spherically Invariant Random Process,” IEE Proc., vol. 134, Pt. F, April 1987, pp. 191–197.

    Google Scholar 

  2. K. D. Ward, C. J. Baker, and S. Watts, “Maritime Surveillance Radar — Part 1: Radar Scattering from the Ocean Surface,” IEE Proc., Pt. F, vol. 137, April 1990, pp. 51–62.

    Google Scholar 

  3. C. J. Baker, “K-distributed Coherent Sea Clutter,” IEE Proc., Pt. F, vol. 138, April 1991, pp. 89–92.

    Google Scholar 

  4. M. Rangaswamy, D. Weiner, and A. Ozturk, “Non-Gaussian Random Vector Identification using Spherically Invariant Random Processes,” IEEE Trans. Aerospace Elec. Sys., vol. 29, Jan. 1993, pp. 111–124.

    Article  Google Scholar 

  5. M. Rangaswamy, D. Weiner, and A. Ozturk, “Computer Generation of Correlated Non-Gaussian Radar Clutter,” IEEE Trans. Aerospace Elec. Sys., vol. 31, 1995, pp. 106–116.

    Article  Google Scholar 

  6. J. L. Noga, “Bayesian State-Space Modeling of Spatio-Temporal Non-Gaussian Radar Returns,” Ph.D. thesis, Univ. of Cambridge, 1998.

    Google Scholar 

  7. F. Gini, M. V. Greco, A. Farina, and P. Lombardo, “Optimum and Mismatched Detection Against K-Distributed Plus Gaussian Clutter,” IEEE Trans. Aerospace Elec. Sys., vol. 34, Jan. 1998, pp. 860–874.

    Article  Google Scholar 

  8. J. H. Michels, “Space-Time Adaptive Processing (STAP) in Compound-Gaussian Airborne Radar Clutter,” http://www.aspc.qinetiq.com/Events/July99/jmichels.pdf.

  9. P. Tsakalides, R. Raspanti, C. L. Nikias, “Angle/Doppler Estimation in Heavy-Tailed Clutter Backgraound,” IEEE Trans. Aerospace Elec. Sys., vol. 35, April 1999, pp. 419–436.

    Article  Google Scholar 

  10. D. L. Jaggard, “On Fractal Electrodynamics,” in Recent Advances in Electromagnetic Theory, ed. H.N. Kritikos and D.L. Jaggard, Springer-Verlag, 2001.

    Google Scholar 

  11. J. B. Gao and K. Yao, “Multifractal Features of Sea Clutter,” IEEE Proc.of Radar 2002, April 2002, to appear. SIRP Modeling of Radio Propagation Disturbances

    Google Scholar 

  12. H. M. Hall, “A New Model for Impulsive Phenomena — Application to Atmospheric Noise Communication Channel,” Stanford Univ. Tech. Rept. SEL-66–052, Aug. 1966.

    Google Scholar 

  13. M. P. Shinde and S.N. Gupta, “A Model of HF Impulse Atmospheric Noise,” IEEE Trans. Electromagnetic Compatability, vol. 16, May 1974, pp. 71–75.

    Article  Google Scholar 

  14. M. A. Wadsmorth and S. A. Dinant, “Representation of HF Atmospheric Noise as a Spherically Invariant Random Process,” Proc. SPIE, vol. 3708, April 1999, pp. 181–192.

    Article  Google Scholar 

  15. A. Abdi, H. A. Barger, and M. Kaveh, “Signal Modeling in Wireless Fading Channels using Spherically Invariant Processes,” Proc. IEEE ICASSP, May 2000, pp. 2997–3000.

    Google Scholar 

  16. V. A. Aalo and J. Zhang, “Average Error Prob. of Optimum Combining with a Co-Channel Interferer in Nakagami Fading,” Conf. Record IEEE Wireless Commun. and Networking, vol.1, Sept. 2000, pp. 376–381.

    Google Scholar 

SIRP Modeling in Equalization and Array Processing

  1. M. Rupp, “The Behavior of LMS and NLMS Algorithms in the Presence of Spherically Invariant Processes,” IEEE Trans. Signal Processing, vol. 41, March 1993, pp. 1149–1160.

    Article  MATH  Google Scholar 

  2. P. L. De Leon and D. M. Etter, “Experimental Results of Subband Acoustic Echo Cancellers under Spherically Invariant Random Processes,” Proc. IEEE ICASSP, vol. 2, May 1997, pp. 349–354.

    Google Scholar 

  3. J. P. LeBlanc and P. L. De Leon, “Speech Separation by Kurtosis Maximization,” Proc. IEEE ICASSP, vol. 2, May 1998, pp. 1029–1032.

    Google Scholar 

  4. L. Izzo and M. Tanda, “Diversity Reception of Fading Signals in Spherically Invariant Noise,” IEE Proc. Commun., vol. 145, 1998, pp. 272–276.

    Article  Google Scholar 

  5. R. J. Kozick and B. M. Sadler, “Maximum-Likelihood Array Processing in Non-Gaussian Noise with Gaussian mixtures,” IEEE Trans. on Signal Processing, vol.48, Dec. 2000. pp.3520–35.

    Article  MathSciNet  Google Scholar 

  6. Y. Zhang and R. S. Blum, “An Adaptive Receiver with an Antenna Array for Channels with Correlated Non-Gaussian Interference and Noise using the SAGE Algorithm,” IEEE Trans. on Signal Processing, vol.48, July 2000, pp.2172–2175.

    Article  Google Scholar 

  7. Y. Zhang and R. S. Blum, “Iterative Multiuser Detection for TurboCoded Synchronous CDMA in Gaussian and Non-Gaussian Impulsive Noise,” IEEE Trans. on Commun.,, vol.49, March 2001, pp. 397–400.

    Article  MATH  Google Scholar 

Generation and Simulation of SIRP

  1. E. Conte, M. Longo, and M. Lops, “Modeling and Simulation of Non-Rayleigh Radar Clutter,” IEE Proc. Pt. F, vol. 138, 1991, pp. 121–130.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yao, K. (2003). Spherically Invariant Random Processes: Theory and Applications. In: Bhargava, V.K., Poor, H.V., Tarokh, V., Yoon, S. (eds) Communications, Information and Network Security. The Springer International Series in Engineering and Computer Science, vol 712. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3789-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3789-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5318-6

  • Online ISBN: 978-1-4757-3789-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics