Tunable Diode Laser Sensors for Combustion

  • Mark G. Allen
  • Shawn D. Wehe
Chapter

Abstract

High sensitivity monitoring of combustion species using compact semiconductor lasers began shortly after their invention in the mid 1970s, and included portable sensors for monitoring CO emissions from automobile exhausts and in-situ measurements in laboratory burners.1,2 Today, packages of multiple near-IR diode laser sensors are included by NASA as part of the atmospheric and environmental instrumentation suite of robotic Martian explorers. Significant attributes of Tunable Diode Laser (TDL) sensors based on absorption spectroscopy include: simplicity of design and operation, leading to fully autonomous sensors; high-speed wavelength tuning, leading to high bandwidth sensor response; and low-cost, rugged, and often fiber-coupled configurations, leading in turn to important applications in practical, industrial-scale combustor facilities. The combination of these attributes is direct monitoring of important combustion parameters such as temperature, velocity, mass flux, and individual species concentration levels.3–5

Keywords

Tunable Diode Laser Difference Frequency Generation Supersonic Combustion Combustion Flow Optical Metrology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ku, R.T., Hinkley, E.D., and Sample, J.O., “Long-path monitoring of atmospheric carbon monoxide with a tunable diode laser system,” Applied Optics 14 (1975): 854–861.ADSCrossRefGoogle Scholar
  2. 2.
    Hanson, R.K., Kuntz, P.A., and Kruger, C.H., “High-resolution spectroscopy of combustion gases using a tunable IR diode laser,” Applied Optics 16 (1977): 2045–2047.ADSCrossRefGoogle Scholar
  3. 3.
    Allen, M.G., “Diode laser absorption sensors for gas-dynamic and combustion flows,” Measurement Science & Technology 9 (1998): 545–562.ADSCrossRefGoogle Scholar
  4. 4.
    Wolfrum, J., “Lasers in combustion: from basic theory to practical devices,” Proc. Combust Inst 27 (1998): 1–41.Google Scholar
  5. 5.
    Allen, M.G., Furlong, E.R., and Hanson, R.K., “Tunable diode laser sensing and combustion control,” Applied Combustion Diagnostics, Koshe-Hoinghaus, K., and Jeffries, J., eds., (New York: Francis Taylor, 2002): pp. 479–496.Google Scholar
  6. 6.
    Oh, D.B., “Diode-laser-based sum-frequency generation of tunable wavelength-modulated UV light for OH radical detection,” Optics Letters 20 (1995): 100–102.ADSCrossRefGoogle Scholar
  7. 7.
    Kliner, D.A.V., Koplow, J.P., and Goldberg, L., “Narrow-band, tunable, semiconductor-laser-based source for deep-UV absorption spectroscopy,” Optics Letters 22 (1997): 1418–1420.ADSCrossRefGoogle Scholar
  8. 8.
    Wang, J., Maiorov, M, Baer, D.S., Garbuzov, D.Z., Connolly, J.C., and Hanson, R.K., “In situ combustion measurements of CO with diode-laser absorption near 2.3 μm,” Applied Optics 39 (2000): 5579–5589.ADSCrossRefGoogle Scholar
  9. 9.
    Oh, D.B., and Stanton, A.C., “Measurement of nitric oxide with an antimonide diode laser,” Applied Optics 36 (1997): 3294–3297.ADSCrossRefGoogle Scholar
  10. 10.
    Richter, D., Lancaster, D.G., and Tittel, F.K., “Development of an automated diode-laser-based multicomponent gas sensor,” Applied Optics 39 (2000): 4444–4450.ADSCrossRefGoogle Scholar
  11. 11.
    Petrov, K.P., Ryan, A.T., Patterson, T.L., Huang, L., Field, S.J., Bamford, D.J., “Spectroscopic detection of methane by use of guided-wave diode-pumped difference-frequency generation,” Optics Letters 23 (1998): 1052–1054.ADSCrossRefGoogle Scholar
  12. 12.
    Huang, L., Hui, D., Bamford, DJ., Field, S.J., Mnushkina, I., Myers, L.E., and Kayser, J.V., “Periodic poling of magnesium-oxide-doped stoichiometric lithium niobate grown by the top-seeded solution method,” Applied Physics B 72, (2001): 301–306.CrossRefGoogle Scholar
  13. 13.
    Kohler, R., Tredicucci, A., Beltram, F., Beere, H.E., Linfield, E.H., Davies, A.G., Ritchie, D.A., Iotti, R.C., and Rossi, R., “Terahertz Heterostructure Laser,” Nature 417 (2002): pp. 156–160.ADSCrossRefGoogle Scholar
  14. 14.
    Sonnenfroh, D.M., Rawlins, W.T., Allen, M.G., Gmachl, C, Capasso, F., Hutchinson, A.L., Sivco, D.L., Baillargeon, J.N., and Cho, A.Y., “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Applied Optics 40 (2001): 812–820.Google Scholar
  15. 15.
    Allen, M.G., Upschulte, B.L., Sonnenfroh, D.M., Rawlins, W.T., Gmachl, C, Capasso, F., Hutchinson, A., Sivco, D., Cho, A., “Infrared Characterization of Particulate and Pollutant Emissions from Gas Turbine Combustors,” Paper 2001–0789, 39th AIAA Aerospace Sciences Meeting, January 2001.Google Scholar
  16. 16.
    Arroyo, M.P. and Hanson, R.K., “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Applied Optics 32 (1993): 6104–6116.ADSCrossRefGoogle Scholar
  17. 17.
    Baer, D.S., Nagali, V., Furlong, E.R., and Hanson, R.K., “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA Journal 34 (1996): 489–493.ADSCrossRefGoogle Scholar
  18. 18.
    Rothman, L.S., Rinsland, C.P., Goldman, A., Massie, S.T., Edwards, D.P., Flaud, J.-M., Perrin, A., Camy-Peyret, C, Dana, V., Mandin, J.-Y., Schroeder, J., Mccann, A., Gamache, R.R., Wattson, R.B., Yoshino, K., Chance, K.V., Jucks, K.W., Brown, L.R., Nemtchinov, V., Varanasi, P., “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” Journal of Quantitative Spectroscopy and Radiative Transfer 60 (1998): 665–710.ADSCrossRefGoogle Scholar
  19. 19.
    Allen, M.G. and Kessler, W.J., “Simultaneous water vapor concentration and temperature measurements using 1.31 µm diode lasers,” AIAA Journal 34 (1996): 483–488.ADSCrossRefGoogle Scholar
  20. 20.
    Philippe, L.C., and Hanson, R.K., “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Applied Optics 32 (1993): 6090–6103.ADSCrossRefGoogle Scholar
  21. 21.
    Miller, M.F., Kessler, W.J., and Allen, M.G., “Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets,” Applied Optics 35 (1996): 4905–4912.ADSCrossRefGoogle Scholar
  22. 22.
    Upschulte, B.L., Miller, M.F., and Allen, M.G., “Diode laser sensor for gasdynamic measurements in a model scramjet combustor,” AIAA Journal 38 (2000): 1246–1252.ADSCrossRefGoogle Scholar
  23. 23.
    Allen, M.G., Carleton, K.L., Davis, S.J., Kessler, W.J., Otis, CE., Palombo, D.A., Sonnenfroh, D.M., “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Applied Optics 34 (1995): 3240–3249.ADSCrossRefGoogle Scholar
  24. 24.
    Ebert, V., Fernholz, T., Giesemann, C, Pitz, H., Teichert, H., Wolfrum, J., and Jaritz, H., “ Simultaneous Diode — Laser — Based in — situ — Detection of Multiple Species and Temperature in a Gas — Fired Power-Plant,” Proc. Comb. Inst. 28 (2000): 423–430.CrossRefGoogle Scholar
  25. 25.
    Von Drasek, W., Mulderink, K., Wehe, S., and Allen, M., “Tunable diode laser sensor for the metal processing industry,” Paper No. 33.2, presented at the 41st Conference of Metallurgists, August, 2002.Google Scholar
  26. 26.
    Wehe, S.D., Sonnenfroh, D.M., Allen, M.G., Gmachl, C, and Capasso, F., “Measurements of trace pollutants in combustion flows using room-temperature, mid-IR quantum cascade lasers,” Paper No. 2002–0824, 30th AIAA Aerospace Sciences Meeting, January, 2002.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Mark G. Allen
    • 1
  • Shawn D. Wehe
    • 1
  1. 1.Physical Sciences, Inc.USA

Personalised recommendations