Skip to main content

Abstract

For over a century, fluid properties have been determined by measuring changes in light propagated through them.1–9 The refractive index of fluids changes with temperature, species concentration, and pressure, and so deflections or deformations of optical wavefronts traveling through a fluid can be measured to infer the fluid property of interest. In contrast with optical methods, which do not interfere with flowing gases or liquids, mechanical probes sample the flow with thermocouples or pressure transducers, to determine the fluid properties. These inherently intrusive techniques alter the flow to be measured and only provide coarse spatial resolution regarding the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.S. Settles, “Schlieren and Shadowgraph Techniques, ” Springer-Verlag, Berlin, Heidelberg, New York, (2001).

    Book  MATH  Google Scholar 

  2. P.S. Greenberg et al, “Quantitative rainbow schlieren deflectometry, ” App. OptVol. 34, 3810–3821 (July 1995).

    Article  ADS  Google Scholar 

  3. C. Anderson and J.D. Trolinger, “New Developments in Digital Electronic Flow Diagnostics Methods,” SPIE Proceedings, International Conference, San Diego, CA (July 2001).

    Google Scholar 

  4. W.J. Yanta, et al, “Near and Far Field Measurements of Aero-Optical effects due to Propagation Trough Hypersonic Flows, ” AIAA-2000–2357 (2000).

    Google Scholar 

  5. CM. Vest, Holographic Interferometry, John Wiley and Sons, New York, pp. 387–396 (1979).

    Google Scholar 

  6. J.D. Trolinger, “Laser Instrumentation for Flow Diagnostics, ” AGARDograph 88–286 A NATO publication (October 1988).

    Google Scholar 

  7. J.D. Trolinger, “Application of Generalized Phase Control during Reconstruction to Flow Visualization Holography, ” Applied Optics, 18(6), 15 (March 1979).

    Article  Google Scholar 

  8. W. Merzkirch, Flow Visualization, Academic Press (1987).

    MATH  Google Scholar 

  9. T. Kreis, Holographic Interferometry, Akademie Verlag (1996).

    Google Scholar 

  10. J. Schmitt, Optical coherence tomography; a review, IEEE J. Selected Topics in Quantum Electronics, vol. 5, no. 4, pp 1205–1215, July/August, (1999).

    Article  Google Scholar 

  11. W. Osten, Digitale Verarbeitung und Auswertung von Interferenzbildern, Academie Verlag, Berlin (1991).

    Google Scholar 

  12. P. Smigielski, Holographie Industrielle, Technia, Toulouse (1994).

    Google Scholar 

  13. CM. Vest, Holographie Interferometry, John Wiley & Sons, New York (1979).

    Google Scholar 

  14. R.E. Brooks, L.O. Heflinger, and R.F. Wuerker, “Interferometry with a Holographically Reconstructed Comparison Beam, ” Appl Phys. Letters, 7, pp. 248 (1965).

    Article  ADS  Google Scholar 

  15. K. Takayama, “Application of holographic interferometry to shock wave research ”, Proc. of SPIE, Vol. 398, 174,(1983).

    Article  Google Scholar 

  16. S.C. Cha and H. Sun, “Tomography for Reconstruction Continuous Fields From 111 Posed Multi-directional Interferometry Data ”, Applied Optics, 29(2), pp. 251–258 (Jan 1990).

    Article  ADS  Google Scholar 

  17. B. Timmerman, “Holographic Interferometric Tomography for Unsteady Compressible Flows”, Ph.D. Thesis, Technical University of Delft (1997).

    Google Scholar 

  18. R. Snyder, and L. Hesselink, “Measurement of Mixing Fluid Flows with Optical Tomography,” Optics Letters, Vol. 13(2) (1988).

    Google Scholar 

  19. K.G. Guilbert and L.J. Otten, “Aero-Optical Phenomena, ” Progress in Astronautics and aeronautics Vol. 80, AIWA, New York (1982).

    Book  Google Scholar 

  20. J.D. Trolinger, CF. Hess, B. Yip, B. Battles, and R. Hanson, “Hydroxyl Density Measurements with Resonant Holographic Interferometry, ” AIAA-92–0582, presented at 30th Aerospace Sciences Meeting & Exhibit, Reno, NV (January 6–9, 1992).

    Google Scholar 

  21. J.M. Scrota and W.H. Christiansen, “Flow Diagnostics by Resonant Holographic Interferometry, ” presented at the AIWA 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference, Seattle, WAY (1990).

    Google Scholar 

  22. G.V. Dreiden, A.N. Zaidel, G.V. Ostrovskaya, Y.I. Ostrivskii, N.A. Pobedonostseva, L.V. Tanin, V.N. Filippov and E.N. Shedova, “Plasma Diagnostics by Resonant Interferometry and Holography, ”Sov. J. Plasma Phys., 1, 256 (1975).

    Google Scholar 

  23. C. Anderson, P. Sforza and J. Martel, “Transient Whole Field Flow Diagnostics,” ASME International Mechanical Engineering Congress and Exposition, New York, (November 2002).

    Google Scholar 

  24. J.E. Grievenkamp and J.H. Bruning, Phase Shifting Interferometry, Wiley Interscience Optical Shop Testing, edited by Daniel Malacara 501, (1992).

    Google Scholar 

  25. J.D. Trolinger and N.J. Brock “Sandwich Double-Reference-Wave, Holographic, Phase Shift Interferometry,” Applied Optics, 34(28), 6354–6360 (October 1995).

    Article  ADS  Google Scholar 

  26. R. Smythe and A.J. Moore, “Instantaneous phase-measuring interferometry, ” Optical Engineering, 23(4), 361–364, (July/August 1984).

    Article  Google Scholar 

  27. CS. Vikram, W.K. Witherow and J.D. Trolinger, “Algorithm for Phase-Difference Measurement in Phase-Shifting Interferometry, ” Applied Optics32(31) pp. 6250–6252 (1 November 1993).

    Article  ADS  Google Scholar 

  28. N.J. Brock, J.E. Millerd and J.D. Trolinger, “A Simple Real-Time Interferometer for Quantitative Flow Visualization ”, AIAA Paper No. 99–0770, 37th Aerospace Sciences Meeting, Reno, NV (January 1999).

    Google Scholar 

  29. A. Lai, J. Abbiss, E. Scott, R. Nichols, M. Dang, M. Stone, J. Millerd, N. Brock, and T. Tibbals “Development of a Novel Optical Instrument for Turbine Blade Vibration Analysis, ” 48th Annual Instrument Society of America National Symposium (June 2002).

    Google Scholar 

  30. D.J. Bone, H.A. Bachor, R.J. Sandeman, “Fringe pattern analysis using a 2-D Fourier transform ,” App. Opt. Vol. 25, 3627 (1986).

    Article  Google Scholar 

  31. H. Babinsky and K. Takayama, “Quantitative holographic interferometry of shock wave flows using Fourier transform fringe analysis ,” Proc. 20th Int. Sym. Shock Waves, Pasadena,, World Scientific Press, Jul (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trolinger, J.D. (2003). Interferometric Flow Measurement. In: Mercer, C.R. (eds) Optical Metrology for Fluids, Combustion and Solids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3777-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3777-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5346-9

  • Online ISBN: 978-1-4757-3777-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics