• Leonard M. Weinstein
  • Gary S. Settles


The earliest studies of fluid flow consisted of observations of nature. By studying the movement of smoke, the flight of birds and by observing water swirl around obstacles for example, many details were seen that gave observers clues about what was occurring. Flow visualization remains an important tool even when results are limited to qualitative observation, because it renders many features of a flow-field directly accessible to visual perception and often gives considerable insight into the flow physics. Reference 1 is an excellent text reviewing the most commonly used flow visualization techniques.


Shock Wave Wind Tunnel Test Area Schlieren Image Schlieren Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Merzkirch, Flow visualization. Academic Press, New York, ed. 2, 1987.Google Scholar
  2. 2.
    J. Rienitz, Optical inhomogeneities: schlieren and shadowgraph methods in the seventeenth and eighteenth centuries. Endeavor, 21(2):77–81, 1997.CrossRefGoogle Scholar
  3. 3.
    G.S. Settles, Schlieren and Shadowgraph Techniques. Springer-Verlag, Berlin, 2001.zbMATHCrossRefGoogle Scholar
  4. 4.
    R. Hooke, Micrographia.J. Martyn & J. Allestry, London, 1665.Google Scholar
  5. 5.
    C. Huygens, Oeuvres completes de Christiaan Huygens. Vol. 21. Martinus Nijhoff, La Haye, Holland, ed. 1, 1944.Google Scholar
  6. 6.
    A. Toepler, Beobachtungen nach einer neuen optischen Methode — Ein Beitrag zur Experimentalphysik. M. Cohen & Son, Bonn, 1864.Google Scholar
  7. 7.
    L. Foucault, Mémoire sur la construction des télescopes en verre argenté. Annales de l’Observatoire Imperial de Paris, 5:197–237, 1859.ADSGoogle Scholar
  8. 8.
    P. Krehl, and S. Engemann. August Toepler — the first who visualized shock waves. ShockWaves, 5:1–18, 1995.ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    E. Mach, and J. Sommer. Über die Fortpflanzungsgeschwindigkeit von Explosionsschallwellen. Sitzungsb. d. k. Acad. d. Wiss. Math. Naturw. Cl. Wien, 75:101–130, 1877.Google Scholar
  10. 10.
    H.E. Edgerton, Electronic flash, strobe. MIT Press, ed. 3, 1970.Google Scholar
  11. 11.
    H. Reichenbach, Contributions of Ernst Mach to fluid mechanics. Ann. Rev. Fluid Mech, 15:1–28, 1983.MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    H. Schardin, Das Toeplersche Schlierenverfahren: Grundlagen für seine Anwendung und quantitative Auswertung. VDI-ForschungsheftNo. 367, 5(4): 1–32, 1934.Google Scholar
  13. 13.
    H. Schardin, Die Schlieren verfahren und ihre Anwendungen. Ergebnisse der Exakten Naturwissenschaften, 20:303–439, 1942. English translation available as NASA TT F-12731, April 1970 (N70–25586).ADSCrossRefGoogle Scholar
  14. 14.
    R.J. North, Schlieren systems using graded filters. ARC Report 15,099, British Aeronautical Research Council, 1952.Google Scholar
  15. 15.
    R.J. North, A colour schlieren system using multicolor filters of a simple construction. NPL Aero Report 266, British National Physical Laboratory, 1954.Google Scholar
  16. 16.
    D.W. Holder and R.J. North. Schlieren methods, NPL notes on applied science no. 31. Her Majesty’s Stationery Office, London, 1963.Google Scholar
  17. 17.
    A. Burton, A modified schlieren apparatus for large areas of field. JOSA, 39(11):907–908, 1949.ADSCrossRefGoogle Scholar
  18. 18.
    A. Kantrowitz and R. L. Trimpi. A sharp-focusing schlieren system. J. Aero. Sci., 17:311–319, 1950.Google Scholar
  19. 19.
    A. Burton, The application of schlieren photography in fluid flow and heat transfer analysis. M.S.M.E. Thesis, University of Texas, 1951.Google Scholar
  20. 20.
    R.W. Fish and K. Parnham. Focusing schlieren systems. Report CP-54, British Aeronautical Research Council, 1950.Google Scholar
  21. 21.
    L.M. Weinstein, An improved large-field focusing schlieren system. In Proc. AIAA 29th Aerospace Sciences Mtg, AIAA Paper 91–0567, 1991.Google Scholar
  22. 22.
    L.M. Weinstein, Large-field high-brightness focusing schlieren system. AIAA 1, 31(7): 1250–1255, 1993.CrossRefGoogle Scholar
  23. 23.
    G.S. Settles, E.B. Hackett, J.D. Miller, and L.M. Weinstein. Full-scale schlieren flow visualisation. In Flow Visualisation VII, ed. J. P. Crowder. Begell House, NY, pp. 2–13, 1995.Google Scholar
  24. 24.
    L.M. Weinstein, An optical technique for examining aircraft shock wave structures in flight. NASA CP-3279, pp. 1–17, 1994.Google Scholar
  25. 25.
    L.M. Weinstein, and D. Minto. Focusing schlieren photography at the Holloman high speed test track. In Proc. of 22nd Intl. Congr. on High-Speed Photography and Photonics, SPIE Vol. 2869, pp. 865–873, 1996.Google Scholar
  26. 26.
    L.A. Vasiliev, Schlieren methods. ed. A. Baruch. Israel Program for Scientific Translations, New York, 1971.Google Scholar
  27. 27.
    H.G. Taylor, and J.M. Waldram. Improvements in the schlieren method. J. Sci. Inst., 10(12):378–389, 1933.ADSCrossRefGoogle Scholar
  28. 28.
    T.A. Mortensen, An improved schlieren apparatus employing multiple slit-gratings. Rev. Sci. Instr., 21(1):3–6, 1950.ADSCrossRefGoogle Scholar
  29. 29.
    L.R. Boedecker, Analysis and construction of a sharp focusing schlieren system. MS Thesis, Dept. of Aeronautics & Astronautics, MIT, 1959.Google Scholar
  30. 30.
    E. Gartenberg, L. M. Weinstein, and E. E. Lee, Jr. Aerodynamic investigation with focusing schlieren in a cryogenic wind tunnel. AIAA J., 32(6): 1242–1249, 1993.ADSCrossRefGoogle Scholar
  31. 31.
    J.T. Heineck, Retroreflection focusing schlieren system. US Patent 5,515,158,1996.Google Scholar
  32. 32.
    G.S. Settles, B.T. Keane, B.W. Anderson, and J.A. Gatto, “Shock waves in aviation security and safety,” to be published in Shock Waves. Google Scholar
  33. 33.
    G.S. Settles, Visualizing full-scale ventilation airflows. ASHRAE Journal, 39(7): 19–26, 1997.Google Scholar
  34. 34.
    G.S. Settles, Airflow visualization in a model greenhouse. In Proc. 15th Intl. Congr. for Plastics in Agriculture, Hershey, PA, pp. 88–98, 2000.Google Scholar
  35. 35.
    G.S. Settles, Indoor environments. Chap. 37 of Handbook of Flow Visualization, ed. W. J. Yang. Hemisphere Pub., Washington, pp. 619–626, 1989.Google Scholar
  36. 36.
    F.S. Alvi, G.S. Settles, and L.M. Weinstein. A sharp-focusing schlieren optical deflectometer. AIAA Paper 93–0629, 1993.Google Scholar
  37. 37.
    G.P. Doggett, and N. Chokani. Large-field laser holographic focusing schlieren system. J. Spacecraft Rockets, 30(6):742–748, 1993.ADSCrossRefGoogle Scholar
  38. 38.
    L.M. Weinstein, Schlieren system and method for moving objects. US Patent 5,534,995, July 1996.Google Scholar
  39. 39.
    L.M. Weinstein, An electronic schlieren camera for aircraft shock wave visualisation. In Proc. High-Speed Research Program Sonic Boom Workshop, NASA, Vol. 1, pp. 244–258, 1996.Google Scholar
  40. 40.
    L.M. Weinstein, K. Stacy, G.J. Vieira, E. A. Haering, Jr., and A.H. Bowers. Imaging supersonic aircraft shock waves. J. Flow Vis. Image Proc, 4(3): 189–199, 1997.Google Scholar
  41. 41.
    L.M. Weinstein, W. Culliton, and R. Rivers. Visualisation of transonic flow over a T-38 aircraft. In Proc. 8th Intl. Symp. on Flow Visualisation, Sorrento, Italy, ed. G.M. Carlomagno, Paper no. 80, 1998.Google Scholar
  42. 42.
    L.M. Weinstein, Large field schlieren visualisation - from wind tunnels to flight. In Proc. VSJ-SPIE98, Vis. Soc. of Japan, Paper AB124, 1998.Google Scholar
  43. 43.
    L.M. Weinstein, Vaporizing particle velocimeter. US Patent 5,153,665, Oct. 6,1992.Google Scholar
  44. 44.
    M.A. Kegerise, and G.S. Settles. Schlieren image-correlation velocimetry and its application to free-convection flows. In Proc. 9th Intl. Symp. on Flow Visualization, ed. G.M. Carlomagno and I. Grant, Paper no. 380, 2000.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Leonard M. Weinstein
    • 1
  • Gary S. Settles
    • 2
  1. 1.Langley Research CenterNational Aeronautics and Space AdministrationUSA
  2. 2.Gas Dynamics LaboratoryPennsylvania State UniversityUSA

Personalised recommendations