Skip to main content
  • 217 Accesses

Abstract

The colossal magneto resistance observed in manganites has recently attracted considerable attention. Important advances in the understanding of the properties of these materials have been achieved by applying newly developed numerical techniques to the study of model Hamiltonians proposed decades ago. The numerical discovery of electronic and structural phase separation, confirmed by experimental results, has been of particular relevance. The implicances of this phenomenon to the present understanding of the physics of manganites is discussed. Estimations of the resistivity in the mixed phase regime allows us to conclude that the intrinsic inhomogeneities of the Mn-oxides are crucial to understand their curious magneto transport behavior. The general aspects of the influence of quenched disorder on the competition between ordered states separated by a first-order transition are investigated and a new scale T* for cluster formation is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Jin, et al., Science 264, 413 (1994), and references therein.

    Google Scholar 

  2. Y. Tokura et al., J. Appl. Phys. 79 (8), 5289 (1996).

    Article  ADS  Google Scholar 

  3. G. C. Xiong et al., Appl. Phys. Lett. 66, 1427 (1995), and references therein.

    Google Scholar 

  4. C. Zener, Phys. Rev. 82, 403 (1951); P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).

    Article  Google Scholar 

  5. P. G. de Gennes, Phys. Rev. 118, 141 (1960).

    Article  ADS  Google Scholar 

  6. See also H. Y. Hwang, S-W. Cheong, P.G. Radaelli, M. Marezio, and B. Batlogg, Phys. Rev. Lett. 75, 914 (1995); P. G. Radaelli, D. E. Cox, M. Marezio, and S-W. Cheong, Phys. Rev. B 55, 3015 (1997).

    Google Scholar 

  7. S. Yunoki, J. Hu, A. Malvezzi, A. Moreo, N. Furukawa, and E. Dagotto, Phys. Rev. Lett.80, 845 (1998); E. Dagotto, S. Yunoki, A. Malvezzi, A. Moreo, J. Hu, S. Capponi, D. Poilblanc and N. Furukawa, Phys. Rev. B 58, 6414 (1998).

    Google Scholar 

  8. S. Yunoki, A. Moreo and E. Dagotto, Phys. Rev. Lett. 81, 5612 (1998).

    Article  ADS  Google Scholar 

  9. A. Moreo, M. Mayr, A. Feiguin, S. Yunoki and E. Dagotto, Phys. Rev. Lett. 84, 5568 (2000).

    Article  ADS  Google Scholar 

  10. N. Furukawa, J. Phys. Soc. Jpn.63, 3214 (1994); 64, 2754 (1995).

    Google Scholar 

  11. S. Yunoki and A. Moreo, Phys. Rev. B58, 6403 (1998).

    ADS  Google Scholar 

  12. T. G. Perring et al., Phys. Rev. Lett. 78, 3197 (1997).

    Article  ADS  Google Scholar 

  13. Most of the work in one-dimension (1D) has been performed using t11 =t22 =2t12 = 2t21 (set T1), but results have alsobeen obtained with t11 = t22 and t12 = t21 = 0 (T2), as well as with the hopping that takes into account the proper orbital overlap, namely t11 = 3t22 = t12 = t21 (T3) (see S. Ishihara et al., Phys. Rev. B56, 686 (1997)). In two-dimensions (2D), the set T1 in both directions was used, but also the combination of T3in the y-direction and t11 = 3t22 = -t12 = -t21 (T4) in the x-direction. Finally, in three-dimensions (3D) T4 was used in the x-direction, T3in the y-direction, and t11 = t12 = t21 = 0, t22 = 4/3 (T5) in the z-direction.

    Google Scholar 

  14. A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett.74, 5144 (1995); H. Räder, J. Zang and A. R. Bishop, Phys. Rev. Lett.76, 1356 (1996); A. J. Millis, B. Shraiman and R. Mueller, Phys. Rev. Lett. 77, 175 (1996).

    Google Scholar 

  15. Note that estimations of TFM using quantum and classical phonons lead to very similar results [14].

    Google Scholar 

  16. E. Dagotto, T. Hotta and A. Moreo, Physics Reports, 344, 1 (2001).

    Google Scholar 

  17. Y. Okimoto, T. Katsufuji, T. Ishikawa, A. Urushibara, T. Arima, and Y. Tokura, Phys. Rev. Lett. 75, 109 (1995).

    Article  ADS  Google Scholar 

  18. T. Arima, Y. Tokura, and J.B. Torrance, Phys. Rev. B48, 17006 (1993).

    Google Scholar 

  19. D.S. Dessau, and Z.-X. Shen, contribution to Colossal Magnetoresistance Oxides edited by Y. Tokura (Gordon Breach, Monographs in Condensed Matter Science, London, 1999 ).

    Google Scholar 

  20. A. Moreo et al., Science 283, 2034 (1999).

    Article  Google Scholar 

  21. T. Akimoto et al., Phys. Rev. B 57, R5594 (1998).

    Article  ADS  Google Scholar 

  22. Similar results were reported within a mean-field approximation in R. Maezono, S. Ishihara, and N. Nagaosa, Phys. Rev. B 57, R13993 (1998).

    Article  Google Scholar 

  23. Y. Endoh, K. Hirota, Y. Murakami, T. Fukuda, H. Kimura, H.Nojiri, K. Kaneko, S. Ishihara, S. Okamoto, and S. Maekawa, preprint; K. Kubo, D. M. Edwards, A. C. M. Green, T. Momoi, and H. Sakamoto, preprint, cond-mat/9811286; Y. Motome, H. Nakano and M. Imada, preprint, cond-mat/9811221; Y. Motome and M. Imada, in preparation; N. Nagaosa, private communication.

    Google Scholar 

  24. E. L. Nagaev, phys. stat. sol. (b),186 (1994) 9; and references therein.

    Google Scholar 

  25. Some numerical results already support this picture. [26]

    Google Scholar 

  26. A. L. Malvezzi et al., Phys. Rev. B59, 7033 (1999).

    Article  Google Scholar 

  27. E. Dagotto et al., Phys. Rev.B49, 3548 (1994); and references therein. See also L. P. Gor’kov and A. Sokol, JETP Lett.46, 42 (1987).

    Google Scholar 

  28. M. Uehara et al., Nature 399, 560 (1999).

    Article  ADS  Google Scholar 

  29. M. Fäth et al.,Science 285, 1540 (1999).

    Google Scholar 

  30. J. J. Neumeier and J. L. Cohn, preprint.

    Google Scholar 

  31. S.-W. Cheong, and H. Y. Hwang, in Colossal Magnetoresistance Oxides, ed. Y. Tokura, Monogr. in Condensed Matter Sci., Gordon Breach, London, 1999.

    Google Scholar 

  32. S. Yunoki et al.,Phys. Rev. Lett.84, 3714 (2000).

    Google Scholar 

  33. At this early stage in the calculations it is difficult to quantify how close to the first-order transition one must be in real manganites to observe the effect.

    Google Scholar 

  34. Simulations with other distributions of random numbers lead to similar results.

    Google Scholar 

  35. Open boundary conditions (OBC) were used in Figs.5d-f, and periodic boundary conditions (PBC) in Figs.5a-c, to show that large cluster formation occurs in both cases.

    Google Scholar 

  36. M. Ibarra, and J. De Teresa, JMMM 177-181, 846 (1998); D. Louca and T. Egami, Phys. Rev. B59, 6193 (1999).

    Article  Google Scholar 

  37. M. Mayr, A. Moreo, J. Verges, J. Arispe, A. Feiguin and E. Dagotto. Phys. Rev. Lett. 86, 135 (2001).

    Article  ADS  Google Scholar 

  38. A. Moreo et al., Phys. Rev. Lett. 84, 5568 (2000).

    Article  ADS  Google Scholar 

  39. S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).

    Article  ADS  Google Scholar 

  40. Since ρI(T~0) of y=0.42 LPCMO is finite, the net ρdc(T=0) does not diverge below the naively expected critical point pc=0.50 of a simple 2D network with ρI=00.

    Google Scholar 

  41. R. Mathieu et al., cond-mat/0007154.

    Google Scholar 

  42. S. Kawasaki et al.,J. Phys. Soc. Jpn. 67, 1529 (1998).

    Google Scholar 

  43. “Percolative” configurations are rare in small clusters.

    Google Scholar 

  44. D. P. Landau, Phys. Rev. B21, 1285 (1980).

    Article  ADS  Google Scholar 

  45. J. Burgy et al., cond-mat/0107300.

    Google Scholar 

  46. Y. Tokura et al., talk APS March meeting, Seattle, 2001.

    Google Scholar 

  47. J. B. Torrance et al.,Phys. Rev. B40, 8872 (1989).

    Google Scholar 

  48. For previous work see Y. Imry and M. Wortis, Phys.Rev. B19, 3580 (1979); J. Cardy, cond-mat/9806355; H G Ballesteros et al., Phys. Rev. B61, 3215 (2000).

    Article  Google Scholar 

  49. Y. Imry and S. Ma, Phys. Rev. Lett. 35, 1399 (1975).

    Article  ADS  Google Scholar 

  50. D. Frank and C. Lobb, Phys. Rev. B37, 302 (1988).

    MathSciNet  ADS  Google Scholar 

  51. Typical cluster sizes are not universal, but depend on J2 (analog of (rA)), and W.

    Google Scholar 

  52. While the Sr-based Mn-oxide x=0.45 has a clear Tc depletion (Fig.8), results for other Mn-oxides may not be as prominent.

    Google Scholar 

  53. Consistent with the experimentally well-known resistivity increase with decreasing Tc in Mn-oxides [2, 16, 28, 29, 36].

    Google Scholar 

  54. Studies of LCMO at x=0.30 have reported anomalies at TN400K (De Teresa et al.,Ref. [28, 29, 36]). Competing inhomogeneities in bilayers exist at similar temperatures [D. N. Argyriou et al.,Phys. Rev. B60, 6200 (1999)]. Even in the context of EuO, a T well above the Tc has been identified [C. S. Snow et al.,cond-mat/0011527].

    Google Scholar 

  55. Mixed-phase regimes have a pseudogap in the density of states [A. Moreo et al.,Phys. Rev. Lett. 83, 2773 (1999)].

    Google Scholar 

  56. J. L. Alonso et al., Nucl. Phys. B 596, 587 (2001).

    MATH  Google Scholar 

  57. P. G. Radaelli, J. D. Jorgensen, R. Kleb, B. A. Hunter, F. C. Chou, and D. C. Johnston, Phys. Rev.B49, 6239 (1994) and references therein.

    Google Scholar 

  58. P. C. Hammel, A. P. Reyes, S-W. Cheong, Z. Fisk, and J. E. Schirber, Phys. Rev. Lett.71, 440 (1993), and references therein.

    Google Scholar 

  59. It is interesting to observe that experimental studies of Sr2−yLayMnO4 have reported evidence for electronic phase separation and charge ordering at small y. See W. Bao, et al., preprint. See also J. Q. Li et al., Phys. Rev. Lett.79, 297 (1997) for phase segregation in La1−x,SrxFeO3.

    Google Scholar 

  60. J. W. Lynn et al., Phys. Rev. Lett. 76, 4046 (1996).

    Article  ADS  Google Scholar 

  61. J. M. De Teresa et al., Nature 386, 256 (1997).

    Article  ADS  Google Scholar 

  62. J. B. Goodenough and J.-S. Zhou, Nature 386, 229 (1997).

    Article  ADS  Google Scholar 

  63. Our results should apply to any manganite with an AF-FM competition, and also to non-manganite compounds with similar phenomenology as those described in G. Cao et al.,Phys. Rev.B56, 5387 (1997) and Ref.[64]. Our results are also related to the relaxor FM picture of Cr-doped Nd½Ca½MnO3 (T. Kimura et al.,Phys. Rev. Lett. 83, 3940 (1999)).

    Google Scholar 

  64. S. Yoon et al., Phys. Rev. B58, 2795 (1998).

    ADS  Google Scholar 

  65. In our approach large ρ dc changes can be obtained whenever two ordered states are in competition, even if both are insulating, if their ρ dc ’s are sufficiently different.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moreo, A., Dagotto, E. (2002). Theory of Manganites. In: Gonis, A., Kioussis, N., Ciftan, M. (eds) Electron Correlations and Materials Properties 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3760-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3760-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3392-8

  • Online ISBN: 978-1-4757-3760-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics