Advertisement

Orbital Properties of Vanadium Ions in Magnetically Ordered V2O3

  • S. W. Lovesey
  • K. S. Knight
  • D. S. Sivia
Chapter

Abstract

Vanadium sesquioxide (V2O3) displays a number of electronic, magnetic and structural properties that are challenging to interpret and explain1–7. At room temperature V2O3 has the corundum structure with space group \(R\bar 3c\) , and it is metallic and paramagnetic. On reducing the temperature the corundum structure distorts to a monoclinic structure with space group I2/a. The structural transition in the temperature range 150 – 160K is strongly first-order and ferroelastic. Accompanying the transition are a change from metallic to insulating behaviour and the onset of antiferromagnetic order3. The metal-insulator transition is viewed as a classic Mott transition, in which spin and orbital degrees of freedom are independent.

Keywords

Monoclinic Structure Spatial Symmetry Orbital Moment Orbital Magnetization Trigonal Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. B. McWhan, T. M. Rice, and J. P. Remeika, Phys. Rev. Lett. 23, 1334 (1969).ADSCrossRefGoogle Scholar
  2. 2.
    P. D. Dernier and M. Marezio, Phys. Rev. B2, 3771 (1970).ADSCrossRefGoogle Scholar
  3. 3.
    R. M. Moon, Phys. Rev. Lett. 25, 527 (1970).CrossRefGoogle Scholar
  4. 4.
    D. B. McWhan et al., Phys. Rev. B7, 1920 (1973).ADSGoogle Scholar
  5. 5.
    N. F. Mott, Metal-Insulator Transitions ( Taylor and Francis, London, 1990 )Google Scholar
  6. 6.
    T. M. Rice, Spectroscopy of Mott Insulators and Correlated Metals, edited by A. Fujimori and Y. Tokura ( Springer, Berlin, 1995 ).Google Scholar
  7. 7.
    F. Mila et al., Phys. Rev. Lett. 85, 1714 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    L. Paolasini et al., Phys. Rev. Lett. 82, 4719 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    L. Paolasini et al., submitted to J. Elect. Spect. amp; Related Phenomena (2000).Google Scholar
  10. 10.
    L. Paolasini, private communication.Google Scholar
  11. 11.
    S. W. Lovesey and K. S. Knight, J. Phys.: Condens. Matter 12, L367 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    D. H. Templeton and L. K. Templeton, Phys. Rev. B49, 14850 (1994).Google Scholar
  13. 13.
    D. H. Templeton, Acta Cryst. A54, 158 (1998).CrossRefGoogle Scholar
  14. 14.
    K. D. Finkelstein, Q. Shen and S. Shastri, Phys. Rev. Lett. 69, 1612 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Tanaka et al., J. Phys.: Condens. Matter 11, L505 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    S. W. Lovesey, J. Phys.: Condens. Matter 10, 2505 (1998).ADSCrossRefGoogle Scholar
  17. 17.
    S. W. Lovesey, K. S. Knight and E. Balcar, to appear in Phys. Rev. B (2001).Google Scholar
  18. 18.
    D. S. Sivia, Data Analysis — A Bayesian Tutorial (Oxford University Press, Oxford, 1996 ).Google Scholar
  19. 19.
    J. A. Nelder and R. Mead, Computer J. 7, 308 (1965).zbMATHCrossRefGoogle Scholar
  20. 20.
    D.S. Sivia, Dealing with duff data, MaxEnt 96, eds. M. Sears, V. Nedeljkovic, N.E. Pendock and, S. Sibisi, University of Witwatersand, Johannesburg, 1997.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • S. W. Lovesey
  • K. S. Knight
  • D. S. Sivia
    • 1
  1. 1.Rutherford Appleton LaboratoryISIS FacilityOxfordshireUK

Personalised recommendations