Density Functional Theory from the Extreme Limits of Correlation

  • Michael Seidl


The difficulty of the quantum-mechanical many-body problem of atoms, molecules, solids, etc. is mainly due to the mutual Coulomb repulsion between the electrons. In Hartree-Fock theory, this two-particle interaction is approximated by an effective single-particle potential. In terms of the rest interaction, the perturbation theory by Møller and Plessetl provides a weak-interaction expansion for the ground state energy. If carried to high orders, however, this expansion seems to diverge even in cases as promising as the neon atom.2


Density Functional Theory Correlation Energy Perturbation Expansion Neon Atom Spherical Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    J. Olsen, O. Christiansen, H. Koch, and P. Jørgensen, J. Chem. Phys. 105, 5082 (1996).ADSCrossRefGoogle Scholar
  3. 3.
    S.M. Reimann, M. Koskinen, and M. Manninen, Phys. Rev. B 62, 8108 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    R. Egger, W. Häusler, C.H. Mak, H. Grabert, Phys. Rev. Lett. 82, 3320 (1999).ADSCrossRefGoogle Scholar
  5. 5.
    M. Seidl, J. P. Perdew, and M. Levy, Phys. Rev. A 59, 51 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    M. Seidl, Phys. Rev. A 60, 4387 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    E. Clementi and C. Roetti, At. data nucl. Data Tables 14, 177 (1974).ADSCrossRefGoogle Scholar
  8. 8.
    R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules ( Oxford University Press, New York, 1989 ).Google Scholar
  9. 9.
    R.M. Dreizier and E.K.U. Gross, Density Functional Theory ( Springer, Berlin, 1990 )CrossRefGoogle Scholar
  10. 10.
    D. C. Langreth and J. P. Perdew, Solid State Commun. 17, 1425 (1975).ADSCrossRefGoogle Scholar
  11. 11.
    O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).ADSCrossRefGoogle Scholar
  12. 12.
    A. Görling and M. Levy, Phys. Rev. B 47, 13 105 (1993);Google Scholar
  13. A. Görling and M. Levy, Phys. Rev. A 52, 4493 (1995).ADSCrossRefGoogle Scholar
  14. 13.
    M. Seidl, (unpublished).Google Scholar
  15. 14.
    M. Seidl, J. P. Perdew, and S. Kurth, Phys. Rev. Lett. 84, 5070 (2000).ADSCrossRefGoogle Scholar
  16. 15.
    M. Levy, in The single-Particle Density in Physics and Chemistry, eds. N.H. March and B.M. Deb, Academic Press, London (1987).CrossRefGoogle Scholar
  17. 16.
    M. Levy, Phys. Rev. A 43, 4637 (1991).ADSCrossRefGoogle Scholar
  18. 17.
    M. Pindl, Diploma thesis,University of Regensburg, October 2000 (unpublished).Google Scholar
  19. 18.
    C. J. Umrigar and X. Gonze, Phys. Rev. A 50, 3827, (1994);ADSCrossRefGoogle Scholar
  20. C. J. Umrigar, private communication.Google Scholar
  21. 19.
    M. Seidl, J. P. Perdew, and S. Kurth, Phys. Rev. A 62, 12–502 (2000).CrossRefGoogle Scholar
  22. 20.
    J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Phys. Rev. Lett. 82, 2544 (1999);ADSCrossRefGoogle Scholar
  23. J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, ibid. 82 5179 (1999) (E); and references therein.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Michael Seidl
    • 1
  1. 1.Michael Seidl, Institute of Theoretical PhysicsUniversity of RegensburgRegensburgGermany

Personalised recommendations