Bsse-Corrected Perturbation Theories of Intermolecular Interactions

  • Ágnes Vibók
  • Gábor J. Halász
  • István Mayer


Intermolecular interactions play very important role in chemistry and physics. Several specific quantum chemical methods have been developed for calculating them. The problem of basis set superposition error (BSSE) occurring in these calculations has also been recognized for many years. It is due to the use of finite basis sets: neither the energy of the whole interacting complex (“supermolecule”) nor the energies of the indioovidual constituting molecules (“monomers”) are exact..Calculating the interaction energy as the difference of these quantities, one observes a systematic imbalance, usually leading to too deep minima on the potential surfaces. This is connected with a better description — in the energetic sense — of the individual constituting molecules within the complex, when the extended basis of the whole supermolecule becomes available, than that in the free monomer case. Different approaches have been proposed in the literature to account for this BSSE effect both at the SCF and at the correlated levels of theory. These methods can approximately be divided into two groups. The first, most commonly used approach is the Boys-Bernardi counterpoise (CP) correction scheme[1] in which the supermolecule energy is used without any correction, while the monomer energies are recomputed by using the full dimer basis set for every geometrical arrangement of the complex, so they become distance dependent. We shall discuss that this treatment involves a tacit assumption about the additivity of the BSSE effects. In the other approach, one assumes that the free monomer energies are correct for the given basis set,and the BSSE has to be eliminated in some manner from the supermolecule calculation. Either one omits some terms from the supermolecule energy expression as being due to BSSE[2, 3] or one tries to get rid of it when determining the wavefunction, as used in the so called “Chemical Hamiltonian Approach” (CHA).


Monomer Basis Hydrogen Bond Length Free Monomer Monomer Energy Ghost Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. B. Jansen and P. Ross, Chem. Phys. Lett. 3, 140 (1969).Google Scholar
  2. S. B. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).Google Scholar
  3. [2]
    P. W. Fowler and A. D. Buckingham, Mol.Phys. 50, 1349 (1983).ADSCrossRefGoogle Scholar
  4. [3]
    M. M. Szczesniak and S. Scheiner, Chem. Phys. Lett. 131, 230 (1986).ADSCrossRefGoogle Scholar
  5. [4]
    I. Mayer, Intern. J. Quantum Chem. 23, 341 (1983).CrossRefGoogle Scholar
  6. I. Mayer, in “Modelling of structure and properties of molecules” (ed. Z.B.Maksic ), Ellis Horwood, Chicester, UK, 1987, p. 145.Google Scholar
  7. [5] I. Mayer and A. Vibók, Chem. Phys. Lett. 136, 115 (1987).
    I. Mayer and A. Vibók, Chem. Phys. Lett. 140, 558 (1987).ADSCrossRefGoogle Scholar
  8. A. Vibók and I. Mayer, J. Mol. Struct. (Theochem), 170, 9 (1988).CrossRefGoogle Scholar
  9. [6]
    A. Vibók and I. Mayer, Intern. J. Quantum Chem. 43, 801 (1992).ADSCrossRefGoogle Scholar
  10. [7]
    I. Mayer, P.R. Surp,n, and A. Vibók, Int. J. Quantum Chem. Quantum Chem. Symp. 23, 281 (1989).ADSGoogle Scholar
  11. [8]
    I. Mayer and L. Turi, J. Mol. Struct. (Theochem), 227, 43 (1991).CrossRefGoogle Scholar
  12. [9]
    I. Mayer and P.R. Surjan, Int. J. Quantum Chem. 36, 225 (1989).CrossRefGoogle Scholar
  13. [10]
    P. Valiron, A. Vibók, and I. Mayer, J. Comp. Chem. 14, 401 (1993).CrossRefGoogle Scholar
  14. [11]
    Fu-Ming Tao, J. Chem. Phys. 100, 3645 (1993).ADSCrossRefGoogle Scholar
  15. [12]
    Juan J. Novoa, Marc Planas, and Myung-Hwan Whangbo, Chem. Phys. Lett. 225, 240 (1994).ADSCrossRefGoogle Scholar
  16. [13]
    Ernest R. Davidson and Subhas J. Chakravarty, Chem. Phys. Lett. 217, 48 (1994).ADSCrossRefGoogle Scholar
  17. [14]
    I. Mayer, Int. J. Quant. Chem. 70, 41 (1998).ADSCrossRefGoogle Scholar
  18. [15]
    J. Noga and A. Vibók, Chem. Phys. Lett. 180, 114 (1991).ADSCrossRefGoogle Scholar
  19. [16]
    I. Mayer, A. Vibók, and P. Valiron, Chem. Phys. Lett. 224, 166 (1994).ADSCrossRefGoogle Scholar
  20. [17]
    I. Mayer and A. Vibók, Mol.Phys. 92, 503 (1997).ADSCrossRefGoogle Scholar
  21. [18]
    I. Mayer and P. Valiron, J. Chem. Phys. 109 3360 (1998).Google Scholar
  22. [19]
    M. Kieninger, S. Suhai, and I. Mayer, Chem. Phys. Lett. 230, 485 (1994).ADSCrossRefGoogle Scholar
  23. [20]
    B. Paizs and S. Suhai, J. Comput. Chem. 18, 694 (1997).CrossRefGoogle Scholar
  24. [21]
    B. Paizs and S. Suhai, J. Comput. Chem. 19, 575 (1998).CrossRefGoogle Scholar
  25. [22]
    A. Vibók, G. HaNasz, and I. Mayer, Mol.Phys. 93, 873 (1998).ADSCrossRefGoogle Scholar
  26. [23]
    I. Mayer, Mol. Phys. 89, 515 (1996).ADSCrossRefGoogle Scholar
  27. [24]
    G. Halâsz, A. Vibók, and I. Mayer, J. Comput. Chem. 20, 274 (1999).CrossRefGoogle Scholar
  28. [25]
    I. Mayer and P. R. Surjâan, Chem. Phys. Lett. 191, 497 (1992).ADSCrossRefGoogle Scholar
  29. [26]
    H. C. Longuet-Higgins, p. 105 in “Quantum Theory of Atoms. Molecules and the Solid State” (ed. P.-O. Löwdin) Academic Press, New York, 1966.Google Scholar
  30. [27]
    P. R. Surjân, “Second Quantized Approach To Quantum Chemistry” Springer, Berlin, 1989.Google Scholar
  31. [29]
    A. Hamza and I. Mayer, Int. J. Quantum Chem. 82. 53. 105, (2001).Google Scholar
  32. [30]
    Á. Vibók and I. Mayer, Acta Phys. Hung. 68, 241 (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Ágnes Vibók
    • 1
  • Gábor J. Halász
    • 2
  • István Mayer
    • 3
  1. 1.Institute of Theoretical PhysicsUniversity of DebrecenDebrecenHungary
  2. 2.Institute of Mathematics and InformaticsUniversity of DebrecenDebrecenHungary
  3. 3.Institute of ChemistryChemical Research Center, Hungarian Academy of SciencesBudapestHungary

Personalised recommendations