Skip to main content

Cooperative Control Design for Uninhabited Air Vehicles

  • Chapter

Part of the book series: Cooperative Systems ((COSY,volume 1))

Abstract

The main objective of this research is to develop and evaluate the performance of strategies for cooperative control of autonomous air vehicles that seek to gather information about a dynamic target environment, evade threats, and coordinate strikes against targets. The chapter presents an approach for cooperative search by a team of uninhabited autonomous air vehicles, which are equipped with sensors to view a limited region of the environment, and are able to communicate with one another to enable cooperation. The developed cooperative search framework is based on two inter-dependent tasks: (i) on-line learning of the environment and storing of the information in the form of a “search map”; and (ii) utilization of the search map and other information to compute on-line a guidance trajectory for the vehicle to follow. We develop a real-time approach for on-line cooperation between air vehicles, which is based on treating the paths of other vehicles as “soft obstacles” to be avoided. Based on artificial potential field methods, we develop the concept of “rivaling force” between vehicles as a way of enhancing cooperation. We study the stability of vehicular swarms in a multidimensional framework to try to understand what types of communications are needed to achieve cooperative search and engagement, and characteristics that affect swarm aggregation and disintegration. Simulation results are presented to illustrated the concepts developed in the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Ablavsky and M. Snorrason, “Optimal search for a moving target: a geometric approach”, in AIAA Guidance, Navigation, and Control Conference and Exhibit, Denver, CO, 2000.

    Google Scholar 

  2. J. Albus and A. Meystel, Engineering of Mind: An Intelligent Systems Perspective, John Wiley and Sons, NY, 2000.

    Google Scholar 

  3. R. Arkin, Behavior-Based Robotics, MIT Press, Cambridge, MA, 1998.

    Google Scholar 

  4. J. Bender and R. Fenton, “On the flow capacity of automated highways”, Transport. Sci, 4(l):52–63, 1970.

    Article  Google Scholar 

  5. G. Beni and J. Wang, “Swarm intelligence in cellular robotics systems”, in Proceedings of NATO Advanced Workshop on Robots and Biological System, pages 703–712, 1989.

    Google Scholar 

  6. S. Benkoski, M. Monticino and J. Weisinger, “A survey of the search theory literature”, Naval Research Logistics, 38:469–494, 1991.

    Article  MATH  Google Scholar 

  7. D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation Numerical Methods, Prentice Hall, NJ, 1989.

    MATH  Google Scholar 

  8. E. Bonabeau, M. Dorigo and G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems, Oxford Univ. Press, NY, 1999.

    MATH  Google Scholar 

  9. C. Breder, “Equations descriptive of fish schools and other animal aggregations”, Ecology, 35:361–370, 1954.

    Article  Google Scholar 

  10. R. Brooks, “A robust layered control system for a mobile robot”, IEEE Trans, on Robotics and Automation, 2(1), 1986.

    Google Scholar 

  11. R. Brooks, editor, Cambrian Intelligence: The Early History of the New AI. MIT Press, Cambridge, MA, 1999.

    MATH  Google Scholar 

  12. S. Cameron, “Obstacle avoidance and path planning”, Industrial Robot, 21(5):9–14, 1994.

    Article  Google Scholar 

  13. H. Choset and P. Pignon, “Coverage path planning: the boustrophedon cellular decomposition”, In International Conference on Field and Service Robotics, Canberra, Australia, 1997.

    Google Scholar 

  14. A. Conn, K. Scheinberg and P. Toint, “Recent progress in unconstrained nonlinear optimization without derivatives”, Mathematical Programming, 79:397–414, 1997.

    MathSciNet  MATH  Google Scholar 

  15. Z. Csahok and T. Vicsek, “Lattice-gas model for collective bilogical motion”, Physical Review E, 52(5):5297–5303, 1995.

    Article  Google Scholar 

  16. A. Czirok, E. Ben-Jacob I. Cohen, and T. Vicsek, “Formation of complex bacterial colonies via self-generated vortices”, Physical Review E, 54(2):1791–1801, 1996.

    Article  Google Scholar 

  17. A. Czirok and T. Vicsek, “Collective behavior of interacting self-propelled particles”, Physica A, 281:17–29, 2000.

    Article  Google Scholar 

  18. J. Danskin, “A helicopter versus submarines search game”, Operations Research, 16:509–517, 1968.

    Article  Google Scholar 

  19. R. Dell and J. Eagle, “Using multiple searchers in constrainted-path moving-targer search problems”, Naval Research Logistics, 43:463–480, 1996.

    Article  MATH  Google Scholar 

  20. J. Dennis and V. Torczon, “Direct search methods on parallel machines”, SIAM Journal Optimization, 1(4):448–474, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Drogoul, M. Tambe and T. Fukuda, editors, Collective Robotics. Springer Verlag, Berlin, 1998.

    Google Scholar 

  22. G. Dudek et al., “A taxonomy for swarm robots”, In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Yokohama, Japan, 1993.

    Google Scholar 

  23. J. Eagle and J. Yee, “An optimal branch-and-bound procedure for the constrained path moving target search problem”, Operations Research, 38:11–114, 1990.

    Article  MathSciNet  Google Scholar 

  24. R. Fenton, “A headway safety policy for automated highway operation”, IEEE Trans. Weh. Technol., VT-28:22–28, 1979.

    Article  Google Scholar 

  25. R. Fenton and R. Mayhan, “Automated highway studies at the Ohio State University — an overview”, IEEE Trans, on Vehicular Technology, 40(1):100–113, 1991.

    Article  Google Scholar 

  26. T. Fukuda, T. Ueyama and T. Sugiura, “Self-organization and swarm intelligence in the society of robot being”, in Proceedings of the 2nd International Symposium on Measurement and Control in Robotics, pages 787–794, Tsukuba Science City, Japan, 1992.

    Google Scholar 

  27. V. Gazi and K. M. Passino, “Stability of a one-dimensional discrete-time asynchronous swarm”, in Proc. of the IEEE Int. Symp. on Intelligent Control, Mexico City, 2001.

    Google Scholar 

  28. E. Gelenbe, N. Schmajuk, J. Staddon, and J. Reif, “Autonomous search by robots and animals: A survey”, Robotics and Autonomous Systems, 22:23–34, 1997.

    Article  Google Scholar 

  29. D. Gillen and D. Jacques, “Cooperative behavior schemes for improving the effectiveness of autonomous wide area search munitions”, in R. Murphey and R Pardalos, editors, Cooperative Control and Optimization, pages 95–120, Kluwer Academic Publishers, 2002.

    Chapter  Google Scholar 

  30. D. Godbole, “Control and coordination in uninhabited combat air vehicles”, in Proceedings of the 1999 American Control Conference, pages 1487–1490, 1999.

    Google Scholar 

  31. S. Goldsmith and R. Robinett, “Collective search by mobile robots using alpha-beta coordination”, in A. Drogoul, M. Tambe and T. Fukuda, editors, Collective Robotics, pages 136–146. Springer Verlag: Berlin, 1998.

    Google Scholar 

  32. P. Grindrod, “Models of individual aggregation or clustering in single and multi-species communities”, Journal of Mathematical Biology, 26:651–660, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Hackwood and S. Beni, “Self-organization of sensors for swarm intelligence”, inIEEE Int. Conf on Robotics and Automation, pages 819–829, Nice, France, 1992.

    Google Scholar 

  34. J. Hedrick and D. Swaroop, “Dynamic coupling in vehicles under automatic control”, Vehicle System Dynamics, 23(SUPPL):209–220, 1994.

    Article  Google Scholar 

  35. S. Hert, S. Tiwari and V. Lumelsky, “A terrain-covering algorithm for an AUV”, Autonomous Robots, 3:91–119, 1996.

    Article  Google Scholar 

  36. R. Hohzaki and K. Iida, “An optimal search plan for a moving target when a search path is given”, Mathematica Japonica, 41:175–184, 1995.

    MathSciNet  MATH  Google Scholar 

  37. R. Hohzaki and K. Iida, “Path constrained search problem with reward criterion”, Journal of the Operations Research Society of Japan, 38:254–264, 1995.

    MathSciNet  MATH  Google Scholar 

  38. R. Hohzaki and K. Iida, “A search game when a search path is given”, European Journal of Operational Reasearch, 124:114–124, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  39. D. Hristu and K. Morgansen, “Limited communication control”, Systems &Control Letters, 37(4): 193–205, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  40. W. Jacek, Intelligent Robotic Systems: Design, Planning, and Control. Klwer Academic / Plenum Pub., NY, 1999.

    Google Scholar 

  41. D. Jacques and R. Leblanc, “Effectiveness analysis for wide area search munitions”, in Proceedings of the AIAA Missile Sciences Conference, Monterey, CA, 1998.

    Google Scholar 

  42. K. Jin, P. Liang and G. Beni, “Stability of synchronized distributed control of discrete swarm structures”, in IEEE International Conference on Robotics and Automation, pages 1033–1038, San Diego, California, 1994.

    Google Scholar 

  43. O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots”, in Proceedings of the 1985 IEEE International Conference on Robotics and Automation, pages 500–505, St. Louis, MO, 1985.

    Chapter  Google Scholar 

  44. B. S. Koontz, “A multiple vehicle mission planner to clear unexploded ordinance from a network of roadways”, Master’s thesis, MIT, 1997.

    Google Scholar 

  45. B. Koopman, Search and Screening: General principles with Historical Application, Pergarnon, New York, 1980.

    MATH  Google Scholar 

  46. H. Levine and W.-J. Rappel, “Self-organization in systems of self–propelled particles”, Physical Review E, 63(l):017101-l–017101–4, 2001.

    Google Scholar 

  47. Y. Liu, K. Passino and M. Polycarpou, “Stability analysis of one-dimensional asynchronous mobile swarms”, Submitted to the 40th IEEE Conference on Decision and Control, 2001.

    Google Scholar 

  48. Y Liu, K. Passino and M. Polycarpou, “Stability analysis of one-dimensional asynchronous swarms”, Proceedings of the 2001 American Control Conference, 2001.

    Google Scholar 

  49. Y Liu, K. Passino and M. Polycarpou, “Stability analysis of one-dimensional asynchronous swarms”, Submitted to IEEE Transaction on Automatic Control, 2001.

    Google Scholar 

  50. M. Lizana and V. Padron, “A specially discrete model for aggregating populations”, Journal of Mathematical Biology, 38:79–102, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  51. S. Lucidi and M. Sciandrone, “On the global convergence of derivative free methods for unconstrained optimization”, Technical Report, Univ. di Roma “La Sapienza”, 1997.

    Google Scholar 

  52. M. Mataric, “Minimizing complexity in controlling a mobile robot population”, In IEEE Int. Conf on Robotics and Automation, pages 830–835, Nice, France, 1992.

    Google Scholar 

  53. A. S. Mikhailov and D. H. Zanette, “Noise–induced breakdown of coherent collective motion in swarms”, Physical Review E, 60(4):4571–4575, 1999.

    Article  Google Scholar 

  54. R. Miller and W. Stephen, “Spatial relationships in flocks of sandhill cranes (Grus canadensis)”, Ecology, 47:323–327, 1996.

    Article  Google Scholar 

  55. M. Millonas, “Swarms, phase transitions, and collective intelligence”, in Artificial Life III, pages 417–445, Addison–Wesley, 1994.

    Google Scholar 

  56. A. Mogilner and L. Edelstein–Keshet, “A non–local model for a swarm” Journal of Mathematical Biology, 38:534–570, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  57. J. Neider and R. Mead, “A simplex method for function minimization” Computer Journal, 7:308–313, 1965.

    Article  Google Scholar 

  58. M. Pachter and P. Chandler, “Challenges of autonomous control”, IEEE Control Systems Magazine, pages 92–97, 1998.

    Google Scholar 

  59. K. Passino, “Biomimicry of bacterial foraging for distributed optimization and control”, to appear in IEEE Control Systems Magazine, 2001.

    Google Scholar 

  60. K. Passino and K. Burgess, Stability Analysis of Discrete Event Systems. John Wiley and Sons Pub., New York, 1998.

    Google Scholar 

  61. E. M. Rauch, M. M. Millonas and D. R. Chialvo, “Pattern formation and functionality in swarm models”, Physics Letters A, 207:185–193, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  62. J. Reif and H. Wang, “Social potential fields: a distributed behavioral control for autonomous robots”, Robotics and Autonomous Systems, 27:171 –194, 1999.

    Article  Google Scholar 

  63. J. H. Reif and H. Wang, “Social potential fields: A distributed behavioral control for autonomous rebots”, Robotics and Autonomous Systems, 27:171–194, 1999.

    Article  Google Scholar 

  64. C. Reynolds, “Flocks, herds, and schools: A distributed behavioral model”, Comp. Graph, 21(4):25–34, 1987.

    Article  Google Scholar 

  65. H. Richardson, “Search theory”, in D. Chudnovsky and G. Chudnovsky, editors, Search Theory: Some Recent Developments, pages 1–12. Marcel Dekker, New York, NY, 1987.

    Google Scholar 

  66. R. Rule, “The dynamic scheduling approach to automated vehicle macroscopic control”, Technical Report EES-276A-18, Transport. Contr. Lab., Ohio State Univ., Columbus, OH, 1974.

    Google Scholar 

  67. E. Shaw, “The schooling of fishes”, Sci. Am., 206:128–138, 1962.

    Article  Google Scholar 

  68. N. Shimoyama, K. Sugawa, T. Mizuguchi, Y Hayakawa, and M. Sano, “Collective motion in a system of motile elements”, Physical Review Letters, 76(20):3870–3873, 1996.

    Article  Google Scholar 

  69. S. Singh, R Chandler, C. Schumacher, S. Banda, and M. Pachter, “Adaptive feedback linearizing nonlinear close formation control of UAVs”, in Proceedings of the 2000 American Control Conference, pages 854–858, Chicago, IL, 2000.

    Google Scholar 

  70. M. Snorrason and J. Norris, “Vision based obstacle detection and path planetary rovers”, in Unmanned Ground Vehicle Technology II, Orlanso, FL, 1999.

    Google Scholar 

  71. S. Spires and S. Goldsmith, “Exhaustive geographic search with mobile robots along space–filling curves”, in A. Drogoul, M. Tambe, and T. Fukuda, editors, Collective Robotics, pages 1–12. Springer Verlag: Berlin, 1998.

    Chapter  Google Scholar 

  72. T. Stewart, “Experience with a branch–and–bound algorithm for constrained searcher motion”, In K. Haley and L. Stone, editors, Search Theory and Applications, pages 247–253. Plenum Press, New York, 1980.

    Chapter  Google Scholar 

  73. L. Stone, Theory of Optimal Search, Acadamic Press, New York, 1975.

    MATH  Google Scholar 

  74. L. Stone, “The process of search planning: Current approachs and the continuing problems”, Operational Research, 31:207–233, 1983.

    Article  Google Scholar 

  75. I. Suzuki and M. Yamashita, “Distributed anonymous mobile robots: formation of geometric patterns”, SIAM J. COMPUT, 28(4): 1347–1363, 1997.

    Article  MathSciNet  Google Scholar 

  76. D. Swaroop, String Stability of Interconnected Systems: An Application to Platooning in Automated Highway Systems. PhD thesis, Department of Mechanical Engineering, University of California, Berkeley, 1995.

    Google Scholar 

  77. D. Swaroop and K. Rajagopal, “Intelligent cruise control systems and traffic flow stability”, Transportation Research Part C: Emerging Technologies, 7(6):329–352, 1999.

    Article  Google Scholar 

  78. J. Toner and Y. Tu, “Long–range order in a two–dimensional dynamical xy model: How birds fly together”, Physical Review Letters, 75(23):4326–4329, 1995.

    Article  Google Scholar 

  79. J. Toner and Y. Tu, “Flocks, herds, and schools: A quantitative theory of flocking”, Physical Review E, 58(4):4828–4858, 1998.

    Article  MathSciNet  Google Scholar 

  80. V. Torczon, “On the convergence of the multidirectional search algorithm”, SIAM Journal Optimization, 1(1):123–145, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  81. V. Torczon, “On the convergence of pattern search algorithms”, SIAM Journal Optimization, 7(1): 1–25, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  82. T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel type of phase transition in a system of self–propelled particles”, Physical Review Letters, 75(6): 1226–1229, 1995.

    Article  Google Scholar 

  83. A. Washburn, “Search–evasion game in a fixed region”, Operations Research, 28:1290–1298, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  84. S. Weaver, L. Baird and M. Polycarpou, “An analytical framework for local feedforward networks”, IEEE Transactions on Neural Networks, 9(3):473–482, 1998.

    Article  Google Scholar 

  85. Q. Yan, G. Yang, V. Kapila, and M. Queiroz, “Nonlinear dynamics and output feedback control of multiple spacecraft in elliptical orbits”, in Proceedings of the 2000 American Control Conference, pages 839–843, Chicago, IL, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Polycarpou, M., Yang, Y., Liu, Y., Passino, K. (2003). Cooperative Control Design for Uninhabited Air Vehicles. In: Butenko, S., Murphey, R., Pardalos, P.M. (eds) Cooperative Control: Models, Applications and Algorithms. Cooperative Systems, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3758-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3758-5_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5241-7

  • Online ISBN: 978-1-4757-3758-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics