Skip to main content

Part of the book series: Cooperative Systems ((COSY,volume 1))

  • 861 Accesses

Abstract

We describe a novel class of distributed imaging systems based on several volume holographic imaging elements collaborating to produce high resolution images of surrounding targets. The principles and theory of imaging based on volume diffraction are presented along with results from proof-of-principle experimental system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter”, Opt. Lett., 24(12):811–813, 1999.

    Article  Google Scholar 

  2. G. Barbastathis and D. J. Brady, “Multidimensional tomographic imaging using volume holography”, Proc. IEEE, 87(12):2098–2120, 1999.

    Article  Google Scholar 

  3. W. Liu, D. Psaltis, and G. Barbastathis, “Real time spectral imaging in three spatial dimensions”, to appear in Opt. Lett.

    Google Scholar 

  4. G. Barbastathis and A. Sinha, “Information content of volume holographic images”, Trends in Biotechnology, 19(10):383–392, 2001.

    Article  Google Scholar 

  5. P. J. van Heerden, “Theory of optical information storage in solids”, Appi. Opt., 2(4):393–400, 1963.

    Article  Google Scholar 

  6. D. Psaltis, “Parallel optical memories”, Byte, 17(9): 179, 1992.

    Google Scholar 

  7. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data”, Science, 265(5173):749–752, 1994.

    Article  Google Scholar 

  8. D. Psaltis and F. Mok, “Holographic memories”, Sci. Am., 273(5):70–76, 1995.

    Article  Google Scholar 

  9. Y. S. Abu-Mostafa and D. Psaltis, “Optical neural computers”, Sci. Am., 256(3):66–73, 1987.

    Article  Google Scholar 

  10. J. Hong, “Applications of photorefractive crystals for optical neural networks”, Opt. Quant. Electr., 25(9):S551–S568, 1993.

    Article  Google Scholar 

  11. D. J. Brady, A. G. S. Chen, and G. Rodriguez, “Volume holographic pulse shaping”, Opt. Lett., 17(8):610–612, 1992.

    Article  Google Scholar 

  12. P.-C. Sun, Y. Fainman, Y T. Mazurenko, and D. J. Brady, “Space-time processing with photorefractive volume holography”, SPIE Proceedings, 2529:157–170, 1995.

    Article  Google Scholar 

  13. P.-C. Sun, Y T. Mazurenko, W. S. C. Chang, P. K. L. Yu, and Y Fainman, “All-optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding”, Opt. Lett., 20(16): 1728–1730, 1995.

    Article  Google Scholar 

  14. K. Purchase, D. Brady, G. Smith, S. Roh, M. Osowski, and J. J. Coleman, “Integrated optical pulse shapers for high-bandwidth packet encoding”, SPIE Proceedings, 2613:43–51, 1996.

    Article  Google Scholar 

  15. D. M. Marom, P.-C. Sun, and Y Fainman, “Analysis of spatial-temporal converters for all-optical communication links”, Appl. Opt., 37(14):2858–2868, 1998.

    Article  Google Scholar 

  16. G. A. Rakuljic and V. Levya, “Volume holographic narrow-band optical filter”, Opt. Lett., 18(6):459–461, 1993.

    Article  Google Scholar 

  17. H. Coufal, D. Psaltis, and G. Sincerbox, editors, Holographic data storage, Springer, 2000.

    MATH  Google Scholar 

  18. M. Born and E. Wolf, Principles of optics, Pergamon Presss, 6th edition, 1980.

    Google Scholar 

  19. G. Barbastathis and D. Psaltis, “Shift-multiplexed holographic memory using the two-lambda method”, Opt. Lett, 21(6):429–431, 1996.

    Article  Google Scholar 

  20. M. Levene, G. J. Steckman, and D. Psaltis, “Method for controlling the shift invariance of optical correlators”, Appl. Opt., 38(2):394–398, 1999.

    Article  Google Scholar 

  21. H.-Y S. Li, Y Qiao, and D. Psaltis, “Optical network for real-time face recognition”, Appl. Opt., 32(26):5026–5035, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barbastathis, G., Sinha, A. (2003). N-Ocular Volume Holographic Imaging. In: Butenko, S., Murphey, R., Pardalos, P.M. (eds) Cooperative Control: Models, Applications and Algorithms. Cooperative Systems, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3758-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3758-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5241-7

  • Online ISBN: 978-1-4757-3758-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics