Multi-Objective Optimization

  • Urmila M. Diwekar
Part of the Applied Optimization book series (APOP, volume 80)


Life is a compromise, often involving more than one objective. Even Noah at the time of the great flood faced the same dilemma. Noah’s problem was to build an ark to accommodate a maximum number of animals and to store the maximum amount of food on the ark.


Multiobjective Optimization Feasible Region Goal Programming Pareto Optimal Solution Constraint Violation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benson H. P. (1991), Complete Efficiency and the Initialization of Al-gorithms for Multiple Objective Programming, Operational Research Letters, 10(4), 481.zbMATHCrossRefGoogle Scholar
  2. 2.
    Birge J. R. (1997), Stochastic Programming computation and applications:, INFORMS journal on computing, 9(2),111.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Buchanan J. T. (1986), Multiple Objective mathematical programming: A Review, New Zealand Operational Research, 14(1), 1.MathSciNetGoogle Scholar
  4. 4.
    Carmichael D. G. (1981), Structural Modeling and Optimization, Ellis Horwood Ltd.Google Scholar
  5. 5.
    Chankong, V., Y. Y. Haimes(1983a), Optimization-Based Methods for Multiobjective Decision-Making: An Overview, Large Scale Systems, 5(1), 1.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chankong, V., Y. Y Haimes (1983b), Multiobjective Decision Making Theory and Methodology, Elsevier Science Publishing Co., Inc., New York, NY.zbMATHGoogle Scholar
  7. 7.
    Chankong V., Haimes YY, Thadathil J., Zionts S. (1985), Multiple Criteria Optimization: A State of the Art Review, Decision Making with Multiple Objectives, Lecture Notes in Economics and Mathematical Systems 242, Edited by Y.Y. Haimes, V. Chankong, SpringerVerlag, 36.CrossRefGoogle Scholar
  8. 8.
    Cohon, J. L. (1978), Multiobjective Programming and Planning, Academic Press, Inc., New York, NY.zbMATHGoogle Scholar
  9. 9.
    Cohon, J. L. (1985), Multicriteria Programming: Brief Review and Application, Design Optimization, Edited by J. S. Gero, Academic Press, Inc., 163.Google Scholar
  10. 10.
    Cohon, J., G. Scavone, and R. Solanki (1988), Multicriterion Optimization in Resources Planning, Multicriteria Optimization in Engineering and in the Sciences, W. Stadler (ed.), Plenum Press, New York, NY, 117.Google Scholar
  11. 11.
    Das I., and J. E. Dennis (1998), Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems, SIAM Journal on Optimization, 8(3), 631–657.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Eschenauer, H. A. (1988), Multicriteria Optimization Techniques for Highly Accurate Focusing Systems, Multicriteria Optimization in Engineering and in the Sciences, W. Stadler (ed.), Plenum Press, New York, 309–354.Google Scholar
  13. 13.
    Evans G.W., An Overview of Techniques for Solving Multiobjective Mathematical Programs, Management Science, 30 (11), 1268–1282.Google Scholar
  14. 14.
    Fu Y (2000), Process Design for Environment: A Multi–objective Optimization Framework, Ph.D. Thesis, Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA.Google Scholar
  15. 15.
    Fu Y and U. Diwekar (2002), An Efficient Sampling Approach to Multiobjective Optimization, submitted to Annals of Operations Research.Google Scholar
  16. 16.
    Gass S., and T. Saaty (1955), The Computational Algorithm for the Parametric Objective Function, Naval Research Logistics Quarterly, 2,39–45.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gephart, R.E. and Lundgren, R.E. (1995), Hanford tank clean up: A guide to understanding the technical issues, Report BNWL–645, Richland, Pacific Northwest Laboratory, WA.CrossRefGoogle Scholar
  18. 18.
    Gerber M.S. (1998), Historical generation of Hanford site wastes, Report WHCSA-1224, Richland, Pacific Northwest Laboratory, WA.Google Scholar
  19. 19.
    Haimes, Y. Y, L. S. Lasdon, D. A. Wismer (1971), On a Bicriterion Formulation of the Problems of Integrated System Identification and System Optimization, IEEE Transactions on Systems, Man, and Cybernetics, 1,296–297.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Hopkins D. F., M. Hoza, and C. A. Lo Presti (1994), FY94 Optimal Waste Loading Models Development, Report prepared for U.S. Department of Energy under contract DEAC06–76RLO 1830.Google Scholar
  21. 21.
    Hoza M. (1994), Multipurpose optimization models for high-level waste vitrification, Proceedings of the International Topical Meeting on Nuclear and Hazardous Waste Management — SPECTRUM 94, La Grange Park, IL: American Nuclear Society, 1072–1077.Google Scholar
  22. 22.
    Hrma PR. and Bailey, A.W. (1995), High level waste at Hanford: Potential for waste loading maximization, Report PNL SA–26441, Richland, Pacific Northwest Laboratory, WA.Google Scholar
  23. 23.
    Hwang, C. L., A. S. M. Masud (1979), Multiple Objective Decision Making – Methods and Applications: A State-of-the-Art Survey, Lecture Notes in Economics and Mathematical Systems, 164, Springer-Verlag, Berlin, Heidelberg.zbMATHCrossRefGoogle Scholar
  24. 24.
    Jantzen C.M. and Brown K.G. (1993), Statistical process control of glass manufactured for nuclear waste disposal, American Ceramic Society Bulletin 72, 55–9.Google Scholar
  25. 25.
    Johnson T. and U. Diwekar (1999), The Value of Design Research: Stochastic Optimization as a Policy Tool, Foundations of Computer-Aided Design, Aiche Symposium Series, Vol. 96, Malone et al. Editors, 454.Google Scholar
  26. 26.
    Johnson T. and U. Diwekar (2001), Hanford Nuclear Waste Disposal and the value of reseach, Journal of Multicriteria Decision Analysis, 10, 87–99.zbMATHCrossRefGoogle Scholar
  27. 27.
    Kacker R.S. (1985), Offline quality control, parameter design, and the Taguchi method, Journal of Quality Technology, 17,176–209.Google Scholar
  28. 28.
    Kumar, P., N. Singh, N. K. Tewari (1991), A Nonlinear goal programming Model for Multistage, Multiobjective Decision Problems with Application to Grouping and Loading Problem in a Flexible Manufac-turing System, European Journal of Operational Research, 53(2), 166–171.zbMATHCrossRefGoogle Scholar
  29. 29.
    Kuhn H. W. and A. W. Tuker (1951), Nonlinear Programming, Proceedings of Second Berkeley Symposium on Mathematical Statistics and Probability, Edited by J. Neyman, University of California Press, Berkeley, LA., 481–492.Google Scholar
  30. 30.
    Lieberman E. R. (1991), Soviet Multi-Objective mathematical programming Methods: An Overview, Management Science, 37(9), 1147–1165.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Mendel J.E., Rawest, W.A., Turcotte, R.P. and McElroy J.L. (1980), Physical properties of glass for immobilization of high-level radioactive waste, Nuclear and Chemical Waste Management, 1,17–28.CrossRefGoogle Scholar
  32. 32.
    Miettinen K. M. (1999), Nonlinear Multiobjective Optimization, Kluwer Academic Publishers, Norwell, Massachusetts, MA.zbMATHGoogle Scholar
  33. 33.
    Narayan, V., Diwekar U.M. and Hoza M. (1996), Synthesizing optimal waste blends, Industrial and Engineering Chemistry Research, 35,3519.CrossRefGoogle Scholar
  34. 34.
    Ohkubo, S., P.B.R. Dissanayake, K. Taniwaki (1998), An Approach to Multicriteria Fuzzy Optimization of a Prestressed Concrete Bridge System Considering Cost and Aesthetic Feeling, Structural Optimization, 15(2), 132–140.CrossRefGoogle Scholar
  35. 35.
    Olson D. L., Tchebycheff (1993), Norms in MultiObjective Linear Programming, Mathematical and Computer Modeling, 17(1), 113–124.zbMATHCrossRefGoogle Scholar
  36. 36.
    Osyczka A. (1984), Multicriterion Optimization in Engineering with Fortran programs, Ellis Horwood Limited.Google Scholar
  37. 37.
    Pareto V. (1964), Cours d’Economie Politique, Libraire Droz, Genève.Google Scholar
  38. 38.
    Pareto V. (1971), Manual of Political Economy, The MacMillan Press Ltd.Google Scholar
  39. 39.
    Painton, L. A. and U. M. Diwekar (1995), Stochastic Annealing under uncertainty, European Journal of Operations Research, 83,489.zbMATHCrossRefGoogle Scholar
  40. 40.
    Ravindran, A., Phillips, D.T. and Solberg, J.J. (1987), Operations Research: Principles and Practice, (Second Edition), NY: John Wiley and Sons.Google Scholar
  41. 41.
    Rosenthal R. E (1985), Principles of Multiobjective Optimization, Decision Sciences, 16(2), 133–152.CrossRefGoogle Scholar
  42. 42.
    Schulz W.W. and Lombado N. (Eds.) (1998), Science and Technology for Disposal of Radioactive Tank Wastes. Proceedings of the American Chemical Society Symposium on Science and Technology for Disposal of Radioactive Tank Waste (1997: Las Vegas, Nevada). NY: Plenum Press.Google Scholar
  43. 43.
    Schy, A. A. and D. P. Giesy (1988), Multicriteria Optimization Methods for Design of Aircraft Control Systems, Multicriteria Optimization in Engineering and in the Sciences, W. Stadler (ed.), Plenum Press, New York, 225–262.Google Scholar
  44. 44.
    Silverman, J., R. E. Steuer, A. W. Whisman (1988), A Multi-Period, Multiple Criteria Optimization System for Manpower Planning, European Journal of Operational Research, 34(2), 160–170.MathSciNetCrossRefGoogle Scholar
  45. 45.
    Sobol, I. M., and R. B. Statnikov (1982), Nailuchshie Resheniyagde M Iskat’ (The Best Decisions -Where to Seek Them), Mathematics/Cybernetics Series, No. 1, Znanie, Moscow.Google Scholar
  46. 46.
    Sobol, I. M. (1992), A Global Search for Multicriterial Problems, In Multiple Criteria Decision Making: Proceedings of the Ninth International Conference, A. Goicoechea, L. Duckstein and S. Zionts (eds.), Springer-Verlag, New York, 401–412.CrossRefGoogle Scholar
  47. 47.
    Stadler W. (ed.) (1988), Multicriteria Optimization in Engineering and in the Sciences, Plenum Press, New York, NY.zbMATHGoogle Scholar
  48. 48.
    Starkey, J. M., S. Gray and D. Watts (1988), Vehicle Performance Simulation and Optimization Including Tire Slid, ASME 881733. CrossRefGoogle Scholar
  49. 49.
    Steuer, R.E. (1986), Multiple Criteria Optimization: Theory, Computation, and Applications, John Wiley & Sons, Inc., New York, NY.zbMATHGoogle Scholar
  50. 50.
    Steuer, R. E., and M. Sun (1995), The Parameter Space Investigation Method of Multiple Objective Nonlinear Programming: A Computational Investigation, Operations Research, 43(4), 641–648.MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Stewart T.J. (1992), A Critical Survey on the Status of Multiple Criteria Decision Making Theory and Practice, OMEGA, 20(5–6), 569–586.CrossRefGoogle Scholar
  52. 52.
    Tamiz, M., D. D. Jones (1996), An Overview of Current Solution Methods and Modeling Practices in Goal Programming, Multi-Objective Programming and goal programming: Theories and Applications, Edited by M. Tamiz, Lecture Notes in Economics and Mathematical Systems 432, Springer-Verlag, Berlin, Heidelberg, 198–211.CrossRefGoogle Scholar
  53. 53.
    Van Laarhoven P. J. M. and E. H. Aarts (1987), Simulated Annealing Theory and Applications, D. Reidel Publishing Co: Holland.zbMATHCrossRefGoogle Scholar
  54. 54.
    Wood, E., N. P. Greis, R. E. Steuer (1982), Linear and Nonlinear Applications of the Tchebycheff Metric to the Multi Criteria Water Allocation Problem, Environmental Systems Analysis and Management, Edited by S. Rinaldi, North-Holland Publishing Company, 363–376.Google Scholar
  55. 55.
    Yu, P. L. (1985), Multiple-Criteria Decision Making Concepts, Techniques, and Extensions, Plenum Press, New York, NY.zbMATHCrossRefGoogle Scholar
  56. 56.
    Zadeh L. (1963), Optimality and Non-Scalar-Valued Performance Criteria, IEEE Transactions on Automatic Control, 8,59–60.CrossRefGoogle Scholar
  57. 57.
    Zeleny M. (1974), Linear Multiobjective Programming, Lecture Notes in Economics and Mathematical Systems 95, Springer-Verlag, Berlin, Heidelberg.zbMATHCrossRefGoogle Scholar
  58. 58.
    Zeleny M. (1982), Multiple Criteria Decision Making, McGraw-Hill, Inc., New York, NY.zbMATHGoogle Scholar
  59. 59.
    Zionts S. (1989), Multiple Criteria mathematical programming: An Updated Overview and Several Approaches, Multiple Criteria Decision Making and Risk Analysis Using Microcomputers, Edited by B. Karpak, S. Zionts, Springer-Verlag, Berlin, Heidelberg, 1989, 7–60.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Urmila M. Diwekar
    • 1
  1. 1.Center for Uncertain Systems: Tools for Optimization & Management, Department of Chemical Engineering, and Institute for Environmental Science & PolicyUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations