Skip to main content

Homogenization of Some Multiparametric Problems

  • Chapter
Analysis and Applications — ISAAC 2001

Part of the book series: International Society for Analysis, Applications and Computation ((ISAA,volume 10))

Abstract

Inhomogeneous media are considered in this paper, e.g., composites and mixtures. Let L be the length scale of the problem and d be the typical length of inhomogeneities. The ratio ε = d/L is supposed to be small. Then the averaged equations can often be obtained that describe a certain homogeneous medium and have solutions close in some sense to solutions of original equations. For periodic media an asymptotic homogenization method to obtain the averaged equations is developed making use of the presence of a small parameter ε.

In many problems there are additional small parameters γi, besides ε. For example the following parameters can be small: the ratios of different phases moduli, the ratios of coefficients determining different properties of a phase, the ratios of inhomogeneity scales in different directions. The averaged equations essentially depend on the relations between small parameters ε and γi. In some cases the homogenized equations are of another type than equations describing the process in original medium. For example, instead of differential equations we obtain integro-differential equations.

Construction of averaged equations for periodic media includes solution of the so-called cell-problems. They are boundary-value problems for partial differential equations. As a rule they can be solved only numerically. In some cases analytical approximate solutions to cell-problems and explicit formulae for effective coefficients can be obtained due to presence of additional small parameters. The explicit formulae for effective moduli are very useful, especially in optimal design of materials and constructions.

The paper is a brief review of some author’s results concerning the effect of different small parameters.

The work was supported by Russian Foundation for Basic research (Projects No 02-01-00490, 02-01-00613)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakhvalov, N.S.: Averaging of partial differential equations with the rapidly oscillating coefficients. Doklady Akademii Nauk SSSR 221, 3, (1975), 516–519.

    MathSciNet  Google Scholar 

  2. Bakhvalov, N.S., Panasenko, G.P.: Homogenization. Averaging Processes in Periodic Media. Mathematical Problems in Mechanics of Composite Materials, Nauka, Moscow 1984. Kluwer Academic Publishers, Dordrecht-Boston-London 1989.

    Google Scholar 

  3. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Methods in Periodic Structures. North Holland, Amsterdam 1978.

    Google Scholar 

  4. Sanchez-Palencia, E.: Non Homogeneous Media and Vibration Theory. Lecture Notes in Physics 127, Springer, Berlin 1980.

    Google Scholar 

  5. Bakhvalov, N.S., Eglit, M.E.: Variational properties of averaged models for periodic media. Trudy MIAN 192 (1990), 5–19.

    MathSciNet  Google Scholar 

  6. Bakhvalov, N.S., Eglit, M.E.: Homogenization of dynamic problems singularly depending on small parameters. Proceedings of Second Workshop on Composite Media and Homogenization Theory ( Trieste, 1993) World Scientific, Singapore 1995, 17–35.

    Google Scholar 

  7. Bakhvalov, N.S., Eglit, M.E.: The limiting behavior of periodic media with soft media inclusions. Comp. Maths Math. Phys. 35, no 6 (1995), 719–730.

    MathSciNet  MATH  Google Scholar 

  8. Bakhvalov, N.S., Eglit, M.E.: Explicit Calculation of Effective Moduli for Composites Reinforced by an Irregular System of Fibres. Doklady Mathematics 51 (1995), 46–50.

    MATH  Google Scholar 

  9. Bakhvalov, N.S., Saint Jean Paulin, J.: Homogenization for thermoconductivity in a porous medium with periods of different orders in the different directions. Asymptotic Analysis 13 (1996), 253–276 .

    Google Scholar 

  10. Bakhvalov, N.S., Eglit, M.E.: Effective moduli of composites reinforced by systems of plates and bars. Comp. Maths Math. Phys. 38, no 5 (1998), 783–804.

    MathSciNet  MATH  Google Scholar 

  11. Bakhvalov, N.S., Eglit, M.E.: Effective equations with dispersion for waves propagation in periodic media. Doklady Math. 370 (2000), 1–4.

    MathSciNet  Google Scholar 

  12. Bakhvalov, N.S., Eglit, M.E.: Long-waves asymptotics with dispersion for the waves propagation in stratified media. Part 1. Waves orthogonal to the layers. Russian J. Numer. Analys. and Math. Modelling 15 (2000), 3–14.

    MathSciNet  MATH  Google Scholar 

  13. Bakhvalov, N.S., Eglit, M.E.: Long-waves asymptotics with dispersion for waves propagation in stratified media. Part 2. Waves in arbitrary direction. Russian J. Numer. Analys. And Math. Modelling 15, no 3 (2000).

    Google Scholar 

  14. Dubinskaya, V.Yu.: Asymptotic expansion for a solution of a stationary heat conduction problem in a medium with two small parameters. Doklady RAN 333 (5) (1993), 571–574.

    Google Scholar 

  15. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. and Analysis 11 (1962), 415–448.

    Article  MathSciNet  MATH  Google Scholar 

  16. Sandrakov, G.V.: The homogenization of nonstationary problems the theory of strong nonuniform elastic media. Doklady Mathematics 355, no 5 (1997), 605608.

    Google Scholar 

  17. Yakubenko, T.A.: Averaging a periodic porous medium with periods of different orders in different directions. Russian J. Numer. Analys. and Math. Modelling 13, no 2 (1998), 149–157.

    MathSciNet  MATH  Google Scholar 

  18. Yakubenko, T.A.: Averaging of periodic structures with nonsmooth data. Moss-cow State University, Mech. and Math. Dept., Preprint no 2, 1999, 30 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bakhvalov, N.S., Eglit, M.E. (2003). Homogenization of Some Multiparametric Problems. In: Begehr, H.G.W., Gilbert, R.P., Wong, M.W. (eds) Analysis and Applications — ISAAC 2001. International Society for Analysis, Applications and Computation, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3741-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3741-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5247-9

  • Online ISBN: 978-1-4757-3741-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics