Wideband 90° Phase Shifters

  • Kong-Pang Pun
  • José Epifânio da Franca
  • Carlos Azeredo-Leme
Chapter
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 728)

Abstract

The wideband 90° phase shifter is a critical building block in image-reject receivers, quadrature demodulators as described in the previous chapter, and many other applications where quadrature signal generation is required [1, 2, 3, 4, 5, 6]. The performance of the 90° phase shifter is directly linked to the image rejection performance of those receivers.

Keywords

Finite Impulse Response Parasitic Capacitance Magnitude Response Infinite Impulse Response Hilbert Transformer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Yamamoto, K. Maemura, N. Andoh, and Y.Mitsui, “A 1.9GHz band GaAs direct-quadrature modulator IC with a phase shifter,” IEEE J. Solid-State Circuits, vol. 28, no. 10, pp. 994–1000, Oct 1993.CrossRefGoogle Scholar
  2. [2]
    A. Boveda, F. Ortigoso, and J.I. Alonso, “A 0.7–3GHz GaAs QPSK/QAM direct modulator,” in Digest of Technical Papers, IEEE Int. Solid-State Circuit Conference, Feb. 1993, pp. 142–143.Google Scholar
  3. [3]
    S. Otaka, T. Yamaji, C.Takahashi, and H. Tanimoto, “A low local input 1.9GHz Si-bipolar quadrature modulator with no adjustment,” IEEE J. Solid-Sate circuits, vol. 31, no. 1, pp. 30–37, Jan 1996.CrossRefGoogle Scholar
  4. [4]
    T. Tsukahara, M. Ishikawa, and M. Muraguchi, “A 2V 2GHz Si-bipolar direct-conversion quadrature modulator,” IEEE J. Solid-State Circuits, vol. 31, no. 2, pp. 262–267, Feb 1996.CrossRefGoogle Scholar
  5. [5]
    M. Steyaert and R. Roovers, “A 1-GHz single-chip quadrature modulator,” IEEE J. Solid-State Ciruits, vol. 27, no. 8, pp. 1194–1197, Aug 1992.CrossRefGoogle Scholar
  6. [6]
    T.D. Stetzler, I.G. Post, J.H. Havens, and M. Koyama, “A 2.7–4.5V single chip GSM transceiver RF integrated circuit,” IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1421–1429, Dec 1995.CrossRefGoogle Scholar
  7. [7]
    Stefan L. Hahn, Hilbert Transforms in Signal Processing, Artech House, 1996.Google Scholar
  8. [8]
    Alan V. Oppenheim and Ronald W. Schafer, Discrete-time Signal Processing, Prentice Hall, 1989.Google Scholar
  9. [9]
    I.A. Koullias, J.H. Havens, I.G. Post, and P.E. Bronner, “A 900MHz transceiver chip set for dual-mode cellular radio mobile terminals,” in Digest of Technical Papers, IEEE Int. Solid-State Circuit Conference, Feb. 1993, pp. 140–141.Google Scholar
  10. [10]
    M. H. Ackroyd, “Simplified quadrature network,” Electronic Letters, vol. 4, pp. 105–107, 1968.Google Scholar
  11. [11]
    S.D. Bedrosian, “Normalised design of 90 phase-difference networks,” Trans. of the Inst. Radio Engrs, vol. CT-7, pp. 128–136, 1960.Google Scholar
  12. [12]
    S. Darlington, “Realisation of a constant phase difference,” Bell Syst. Tech. J., vol 29, pp. 94–104, 1950.Google Scholar
  13. [13]
    R. B. Dome, “Wide-band phase shift networks,” Electronics, vol. 19, pp. 112–115, Dec. 1946.Google Scholar
  14. G. G. Gourier and G. F. Newell, “A quadrature network for generating vestigial sideband signals,” Proc. Inst. Electr. Engrs,vol. 107B, pp. 253260, 1960.Google Scholar
  15. [15]
    H. J. Orchard, “Synthesis of wide-band two-phase networks,” Wireless Engr, vol. 27, pp. 72–81, 1950.Google Scholar
  16. [16]
    H. J. Orchard, “The synthesis of RC networks to have prescribed transfer functions,” Proc. IRE, vol. 39, pp. 428–432, Apr. 1951.CrossRefGoogle Scholar
  17. [17]
    W. Saraga, “The design of wideband two-phase networks,” Proc. Inst. Electron. Engrs, vol. 38, pp. 754–770, 1950.Google Scholar
  18. [18]
    D. K. Weaver, “Design of RC wide-band 90-degree phase difference networks,” Proc. IRE, vol. 42, pp. 671–676, Apr. 1954.CrossRefGoogle Scholar
  19. [19]
    M. Faulkner, T. Mattsson, and W. Yates, “Automatic adjustment of quadrature modulators,” IEE Electronic Letters, vol. 27, no. 3, pp. 214–216, Jan. 1991.CrossRefGoogle Scholar
  20. [20]
    M. D. McDonald, “A 2.5GHz BiCMOS image-reject front end,” in Digest of Technical Papers, IEEE Int. Solid-State Circuit Conference, 1993, pp. 144–145.Google Scholar
  21. [21]
    D. Pache, J.M. Fournier, G. Billiot, and P. Senn, “An improved 3V 2GHz BiCMOS image reject mixer IC,” in Proc. IEEE Custom Integrated Circuits Conference, 1995, pp. 95–98.Google Scholar
  22. [22]
    J. Crols and M. Steyaert, “A fully integrated 900 MHz CMOS double quadrature downconverter,” in Digest of Technical Papers, IEEE Int. Solid-State Circuit Conference, 1995, pp. 136–137.Google Scholar
  23. [23]
    F. J. Kub and E. W. Justh, “Analog CMOS implementation of high frequency least-mean square error learning circuit,” IEEE J. Solid-State Circuits, vol. 30, no. 2, pp. 1391–1398, Dec. 1995.CrossRefGoogle Scholar
  24. [24]
    D. J. Corner and J. E. McDermid, “Inductorless bandpass characteristics using allpass networks,” IEEE Trans. Circuit Theory, vol. CT-15, pp. 501–503, Dec. 1968.Google Scholar
  25. [25]
    G. S. Moschytz, “A high Q, insensitive active RC network, similar to the Tarmy-Ghausi circuit, but using single-ended operatoinal amplifiers,” Electron. Lett., vol. 8, pp. 458–459, Sept. 1972.CrossRefGoogle Scholar
  26. [26]
    D.T. Comer, “A wideband, fixed gain BiMOS amplifier,” in Proc. Int. ASIC Conf. Rochester, Rochester, NY, USA, Aug. 1993, pp. 27–30.Google Scholar
  27. [27]
    L. B. Jackson, “On the relationship between digital Hilbert transformers and certain low-pass filters,” IEEE Trans, vol. ASSP-24, pp. 381, 1976.Google Scholar
  28. [28]
    L. B. Jackson, “On the relationship between digital Hilbert transformers and certain low-pass filters,” IEEE Trans, vol. ASSP-33, pp. 381–383, Aug. 1985.Google Scholar
  29. [29]
    J.E. Eklund and R. Arvidsson, “A multiple sampling, single A/D conversion technique for I/Q demodulation in CMOS,” IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 1987–1994, Dec. 1996.CrossRefGoogle Scholar
  30. [30]
    Rashid Ansari, “IIR discrete-time hilbert transformers,” IEEE Trans. on Acoustics, Speech and Signal Processing, vol. ASSP-35, no. 8, pp. 1116–1119, Aug. 1987.Google Scholar
  31. [31]
    Rashid Ansari, “Elliptic filter design for a class of generalized halfband filters,” IEEE Trans. on Acoustics, Speech and Signal Processing, vol. ASSP-33, no. 4, pp. 1146–1150, Oct. 1985.Google Scholar
  32. [32]
    Charles M. Rader, “A simple method for sampling in-phase and quadrature components,” IEEE Trans. on Aerospace and Electronic Systems, vol. AES-20, no. 6, pp. 821–824, Nov. 1984.Google Scholar
  33. [33]
    A. Petraglia, F.A.P. Baruqui, and S.K. Mitra, “Recursive switched-capacitor Hilbert transformers,” in Proc. Int. Symposium on Circuits and Systems, 1998, vol. 1, pp. 496–499.Google Scholar
  34. [34]
    K. Suyama and S.C. Fang, User’s Manual for SWITCAP2 version 1.1, Columbia University, 1992.Google Scholar
  35. [35]
    K.P. Pun, J.E. Franca, and C. Azeredo Leme, “Polyphase SC IIR Hilbert transformers,” IEE Electronics Letters, vol. 35, no. 9, pp. 689–670, 29th April 1999.Google Scholar
  36. [36]
    K. Matsui, T. Matsuura, S. Fukasawa, Y. Izawa, Y. Toba, N.Miyake, and K. Nagasawa, “Cmos video filters using switched capacitor 14mhz circuits,” IEEE J. Solid-State Circuits, vol. SC-20, pp. 1096–1102, Dec. 1985.Google Scholar
  37. [37]
    G. C. Ternes, “Finite amplifier gain and bandwidth effects in switched-capacitor filters,” IEEE J. Solid-State Circuits, vol. SC-15, pp. 358–361, June 1980.Google Scholar
  38. [38]
    K. Martin and A. S. Sedra, “Effects of finite gain and bandwidth on the performance of switched-capacitor filters,” IEEE Trans. Circuits and Systems, vol. CAS-28, pp. 822–829, 1981.Google Scholar
  39. [39]
    K. Haug, F. Maloberti, and G. C. Ternes, “Switched-capacitor integrators with low finite-gain sensitivity,” IEE Electronic Letters, vol. 21, no. 24, pp. 1156–1157, 1985.CrossRefGoogle Scholar
  40. [40]
    G. Fischer and G. S. Moschytz, “SC filters for high frequencies with compensation for finite gain effect,” IEEE Trans. Circuits and Systems, vol. CAS-32, pp. 1050–1056, Oct. 1985.Google Scholar
  41. [41]
    K. Nagaraj, K. Singhal, T. R. Viswanathan, and J. Vlach, “Reduction of finite-gain effect in switched-capacitor filters,” IEE Electronic Letters, vol. 21, pp. 644–645, 1985.CrossRefGoogle Scholar
  42. [42]
    K. Haug, F. Maloberti, and G. C. Ternes, “Switched-capacitor circuits with low opamp gain sensitivity,” in Proc. IEEE Int. Symposium on Circuits and Systems, San Jose, CA, USA, May 1985, pp. 797–800.Google Scholar
  43. [43]
    K. Nagaraj, T.R. Viswanathan, K.Singhal, and J.Vlach, “Switched-capacitor circuits with reduced sensitivity to amplifier gain,” IEEE Trans. Circuits and Systems, vol. CAS-34, no. 5, May 1987.Google Scholar
  44. [44]
    K.P. Pun, J.E. Franca, and C. Azeredo Lerne, “Polyphase SC IIR Hilbert transformer with reduced sensitivity to finite gain and bandwidth,” IEE Electronics Letters, vol. 35, no. 19, pp. 1602–1603, 16th September 1999.Google Scholar
  45. [45]
    Teng-Hsien Hsu and G. C. Ternes, “An improved circuit for pseudo-Npath switched-capacitor filters,” IEEE Trans. Circuits and Systems, vol. CAS-32, pp. 1071–73, Oct. 1985.Google Scholar
  46. [46]
    J. Pandel et al., “Integrated 18th-order pseudo-N-path filter in VIS-SC technique,” IEEE J. Solid-State Circuits, vol. SC-21, pp. 48–55, Feb 1986.Google Scholar
  47. [47]
    Jung-Chen Lin and J. H. Nevi, “Differential charge-domain bilinear-Z switched-capacitor pseudo-N-path filters,” IEEE Trans. Circuits and Systems, vol. CAS-35, pp. 409–414, April 1988.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Kong-Pang Pun
    • 1
  • José Epifânio da Franca
    • 2
  • Carlos Azeredo-Leme
    • 3
  1. 1.The Chinese University of Hong KongHong KongChina
  2. 2.Chipldea Microelectronics S.A.Portugal
  3. 3.Instituto Superior TécnicoLisbonPortugal

Personalised recommendations