Skip to main content

Abstract

In the last two decades, we have witnessed wireless communications evolving from the first generation analog systems to the second generation digital systems (Table 1.1), with dramatic down-scaling and price decreasing of the mobile terminals as well as longer stand-by time. This evolution has been enabled by significant advances in radio and integrated circuit techniques. For example, time-division or code-devision multiple access enabled by modern digital signal processing, together with the vary large scale integrated circuit (VLSI) increased significantly radio capacity and brought the radio costs down to the consumer level [1]. Today, we are seeing the emergence of the third generation wireless communication systems capable of transmitting various services from voice to multimedia (including voice, video, data, Internet, etc) [2, 3] with ever increased bandwidth and data rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.K. Coursey, Understanding digital PCS, the TDMA Standard, Artech House, 1999.

    Google Scholar 

  2. Malcolm W. Oliphant, The mobile phone meets the internet, IEEE Communications Magazine, pp. 20 - 28, Aug. 1999.

    Google Scholar 

  3. William Sweet, Cell phones answer internets call, IEEE Spectrum, pp. 42 - 46, Aug. 2000.

    Google Scholar 

  4. P. Gray and R. Meyer, Future directions of silicon ICs for RF personal communications, in Custom Integrated Circuits Conference, 1995, pp. 83 - 90.

    Google Scholar 

  5. J.C. Rudell, J.J. Ou, et al., Recent developments in high integration multi-standard cmos transceivers for personal communication systems, Int. Sym. on Low Power Electronics, Monterey, California, 1998.

    Google Scholar 

  6. A. Abidi et al., The future of CMOS wireless transcivers, in Digest of Technical Papers, IEEE Int. Solid-State Circuit Conference, Feb. 1997, pp. 118 - 119.

    Google Scholar 

  7. V. Thomas et al., A one-chip 2 GHz single-superhet receiver for 2Mb/s FSK radio communications, in Digest of Technical Papers, IEEE Int. Solid-State Circuit Conference, San Francisco, CA, Feb. 1994, pp. 42 - 43.

    Google Scholar 

  8. T.D. Stetzler, I.G. Post, J.H. Havens, and M. Koyama, A 2.7-4.5V single chip GSM transceiver RF integrated circuit," IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1421 - 1429, Dec 1995.

    Article  Google Scholar 

  9. K. Irie, H. Matsui, T. Endo, et al., A 2.7V GSM RF transceiver IC, in Digest of Technical Papers, IEEE Int. Solid-State Circuit Conference, Feb. 1997, pp. 302 - 303.

    Google Scholar 

  10. P. Orsatti, F. Piazza, Q. Huang, and T. Morimoto, A 20mA-receive 55mA-transmit GSM transceiver in 0.25µm CMOS, in Digest of Technical Papers, IEEE Int. Solid-State Circuit Conference, 1999, pp. 232 - 234.

    Google Scholar 

  11. A. A. Abidi, Direct-conversion radio transceivers for digital communications, IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1399 - 1410, Dec. 1995.

    Article  Google Scholar 

  12. T. Tsukahara, M. Ishikawa, and M. Muraguchi, A 2V 2GHz Si-bipolar direct-conversion quadrature modulator, IEEE J. Solid-State Circuits, vol. 31, no. 2, pp. 262 - 267, Feb 1996.

    Article  Google Scholar 

  13. J. Tang and D. Kasperkovitz, A 0.9-2.2GHz monolithic quadrature mixer oscillator for direct-conversion satellite receivers, in Digest of Technical Papers, IEEE Int. Solid-State Circuit Conference, Feb. 1997, pp. 88 - 89.

    Google Scholar 

  14. J. Crols and M. Steyaert, A 1.5GHz highly linear CMOS down conversion mixer, IEEE J. Solid-State Circuits, vol. 30, no. 7, pp. 736 - 742, July 1995.

    Article  Google Scholar 

  15. J.C. Rudell, J.J. Ou, et al., A 1.9GHz wide-band IF double conversion CMOS receiver for cordless telephone application, IEEE J. Solid-State Circuits, vol. 32, pp. 2071 - 2088, Dec 1997.

    Article  Google Scholar 

  16. H.J. Dressler, Interpolative bandpass A/D conversion - experimental results, IEE Electron. Letters, vol. 26, no. 20, pp. 1652 - 1653, Sept. 1990.

    Article  Google Scholar 

  17. A.M. Thurston, T.H. Pearce, and M.J. Hawksford, Bandpass implementation of the sigma-delta A-D conversion technique, Proc. IEE Int. Conference on A/D and D/A Conversion, Swansea, U.K., pp. 81 - 86, Sept. 1991.

    Google Scholar 

  18. S.A. Jantzi, W.M. Snelgrove, and P.F. Ferguson Jr., A fourth-order bandpass sigma-delta modulator, IEEE J. Solid-State Circuits, vol. 28, no. 3, pp. 282 - 291, March 1993.

    Article  Google Scholar 

  19. S. Jantzi, R. Schreier, and M. Snelgrove, The design of bandpass DE ADCs, in Delta-Sigma Data Converters, Theory, Design and Simulation, S. Norsworthy, R. Schreier, and G.C. Ternes, Eds., pp. 282-308. IEEE Press, 1997.

    Google Scholar 

  20. D.K. Weaver, A third method of generation and detection of singlesideband signals, Proc. IRE, vol. 44, pp. 1703 - 1705, Dec 1956.

    Article  Google Scholar 

  21. Behazad Razavi, Design consideration for direct-conversion receivers, IEEE Trans. on Circuits and Systems - II: Analog and Digital Signal Processing, vol. 44, no. 6, pp. 428 - 435, June 1997.

    Article  Google Scholar 

  22. F.E. Churchill, G.W. Ogar, and B.J. Thompson, The correction of I and Q errors in a coherent processor, IEEE Transactions on Aerospace and Electronic Systems, vol. AES-17, no. 1, pp. 131 - 137, Jan 1981.

    Google Scholar 

  23. Li Yu and W. M. Snelgrove, A novel adaptive mismatch cancellation system for quadrature IF radio receivers, IEEE Transactions on Circuits and Systems: - II: Analog and digital signal processing, vol. 46, no. 6, pp. 789 - 801, June 1999.

    Article  Google Scholar 

  24. J. Crois and M. Steyaert, An analog integrated polyphase filter for a high performance low-if receivers, in Proc. VLSI Circuits Symposium, Kyoto, June 1995, pp. 87 - 88.

    Google Scholar 

  25. T. Okanobu, H. Tomiyama, and H. Arimoto, Advanced low voltage single chip radio IC, IEEE Trans. Consumer Electronics, vol. 38, no. 3, pp. 465475, August 1992.

    Google Scholar 

  26. E. van der Zwan, K. Philips, and C. Bastiaansen, A 10.7MHz IF-tobasebad DE A/D conversion system for AM/FM radio receivers, in Digest of Technical Papers, IEEE Int. Solid-State Circuit Conference, Feb. 2000, pp. 340 - 341.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pun, KP., da Franca, J.E., Azeredo-Leme, C. (2003). Introduction. In: Circuit Design for Wireless Communications. The Springer International Series in Engineering and Computer Science, vol 728. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3737-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3737-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5349-0

  • Online ISBN: 978-1-4757-3737-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics