SCTA in the Future

  • M. Reading
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 3)


Many forms of SCTA and their applications have been described in the preceding chapters. In recent years, examples of the use of SCTA have been increasing and there would seem to be every reason to expect that this trend will continue. In this final chapter it is our purpose to discuss some of the new directions which SCTA might take as its advantages become clearer to a broader range of workers and as new technologies evolve that can usefully employ its principles. We will also outline some of the fundamental issues that still present challenges for the future.


Dynamic Modulus Thermally Stimulate Current Electrochemical Quartz Crystal Microbalance Emanation Thermal Analysis Tapered Element Oscillate Microbalance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Patashnik, G. Rupprecht and J.C.F. Wang, Prepr. Am. Chem. Soc., Div. Pet. Chem., 25 (1980) 188. This device is available under the name of Tapered Element Oscillating Microbalance (TEOM).Google Scholar
  2. 2.
    B.J. Doleman, E.J. Severin and N.S. Lewis, Proc. National Acad. Sciences, 95 (1998) 5442–5447.CrossRefGoogle Scholar
  3. 3.
    J. Krim and E.T. Watts, in Third International Conference on Fundamentals of Adsorption, A.B. Mersmann and S.E. Scholl (Eds.), Engineering Foundation, New York (1991) 445.Google Scholar
  4. 4.
    M.R. Deakin and O.R. Melroy, J. Electrochem. Soc., Vol. 136, No. 2 (1989) 349. This device is commercially available known as the Electrochemical Quartz Crystal Microbalance (EQCM).CrossRefGoogle Scholar
  5. 5.
    R. Berger, Ch. Gerber, H.P. Lang and J.K. Gimzewski, Microelectronic Engineering, 35 (1997) 373–379.CrossRefGoogle Scholar
  6. 6.
    A. Hammiche, M. Reading, H.M. Pollock, Mo Song and D.J. Hourston, Review of Scientific Instrumentation, 6712 (1996) 4268–4273.CrossRefGoogle Scholar
  7. 7.
    M. Reading, D.M. Price, D. Grandy, R.M. Smith, L. Bozec, M. Conroy, A. Hammiche and H.M. Pollock, Macromolecular Symposia, 167 (2000) 45–62.CrossRefGoogle Scholar
  8. 8.
    H.M. Pollock and A. Hammiche, J. Phys D: Appl. Phys. 34 (2001) R23-R53.CrossRefGoogle Scholar
  9. 9.
    M Reading, Thermal Analysis — Techniques and Applications, (Ed.) E.L. Charsley and S.B. Warrington, Chapter 7 (1992) 126.Google Scholar
  10. 10.
    M. Reading, D. Elliott and V.L. Hill, Proc. NATAS (1992) 145.Google Scholar
  11. 11.
    M. Reading, Trends in Polymer Science, 1 (1993) 8.Google Scholar
  12. 12.
    A.A. Lacey, C. Nikolopoulos and M. Reading, 50 (1997) 279.Google Scholar
  13. 13.
    P. Haines, C. Keattch and M. Reading, Differential Scanning Calorimetry, Handbook of Thermal Analysis, (Ed.) M. Brown, Elsevier (1998).Google Scholar
  14. 14.
    Y.A. Kraftmakher, Zh. Prikl. Mekh. & Tekh. Fiz., 5 (1962) 176.Google Scholar
  15. 15.
    V.V. Daniel, Dielectric Relaxation, Academic Press, New York, 1967.Google Scholar
  16. 16.
    A. Lamure, N. Hittini, C. Lacabanne, M.F. Herdmand and D. Herbage, IEEE Trans. El., 21 (1986) 443.CrossRefGoogle Scholar
  17. 17.
    K. Lonvik, J. Therm. Anal., 25 (1982) 109.CrossRefGoogle Scholar
  18. 18.
    T. Mraz, K. Rajeshwar and J. Dubow, Thermochim. Acta, 38 (1980) 389.CrossRefGoogle Scholar
  19. 19.
    M. Reading and J. Rouquerol, Thermochim. Acta, 85 (1985) 299.CrossRefGoogle Scholar
  20. 20.
    V. Balek and J. Tolgyessy, Emanation Thermal Analysis and other Radiometric Emanation Methods, in (Ed.) G. Svehla, Wilson and Wilson’s Comprehensive Analytical Chemistry, Part XIIC, Elsevier, Amsterdam (1984).Google Scholar
  21. 21.
    P.K. Gallagher, J. Thermal Anal., 49 (1997) 33.CrossRefGoogle Scholar
  22. 22.
    M. Reading, Constant Rate Thermal Analysis and Related Techniques, Handbook of Thermal Analysis, (Ed.) M. Brown, Elsevier (1998).Google Scholar
  23. 23.
    G.M.P. Parkes, P.A. Barnes, E.L. Charsley, M. Reading and I. Abrahams, Thermochim Acta, 354 (2000) 39.CrossRefGoogle Scholar
  24. 24.
    M. Reading, Thermochim. Acta, 135 (1988) 37.CrossRefGoogle Scholar
  25. 25.
    M.H. Stacey, Proc. 2nd European Sym. On Thermal Anal., (Ed.) D. Dollimore, Hayden, Aberdeen (1981) 480.Google Scholar
  26. 26.
    G. Thevand and F. Rouquerol, J. Thermal Anal., 13 (1971) 413.Google Scholar
  27. 27.
    M. Reading and D. Dollimore, Thermochim. Acta, 240 (1994) 117–127.CrossRefGoogle Scholar
  28. 28.
    M. Reading, PhD Salford UK 1983.Google Scholar
  29. 29.
    M.E. Thomas, S.P. Terblanche, J.W. Stander, K. Gilbert, L.P. Nortman and N.A. Stone, Proceedings of the International Ceramics Conference 94, International Ceramics Monographs, (Eds.) C.C. Sorell and A.J. Ruys, 1 (1994) 281.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • M. Reading
    • 1
  1. 1.IPTME, Loughborough UniversityLoughboroughUK

Personalised recommendations